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60-637 Poznań, Poland; lukasz.masewicz@up.poznan.pl

6 Institute of Agriculture, University of Tennessee, 370 Plant Biotechnology Building, 2505 EJ Chapman Drive,
Knoxville, TN 37996-4560, USA; mnowicki@utk.edu

7 Department of Production Management and Logistics, Poznan University of Technology,
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Abstract: The growing human population renders challenges for the future supply of food products
with high nutritional value. Here, we enhanced the functional and nutritional value of biscuits,
a popular sweet snack, by replacing the wheat flour with 2%, 6%, or 10% (w/w) cricket powder.
Consumer acceptance ratings for reference and 2% augmented cookies were comparable, whereas
the higher levels of enhancement received inferior consumer scores. This relatively small change in
biscuit recipe provided significant and nutritionally desirable enhancements in the biscuits, observed
in a series of analyses. An increase in the protein content was observed, including essential amino
acids, as well as minerals and fat. This conversion also affected the physical properties of the
biscuits, including hardness, and water molecular dynamics measured by 1H NMR. Cricket powder-
augmented biscuits join the line of enhanced, functionally superior food products. This and similar
food augmentation provide a viable scenario to meet the human food demands in the future.

Keywords: Acheta domesticus; amino acids composition; cookies with insects; edible insects; fatty
acids; nutritional value; minerals; 1H NMR; water dynamics
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1. Introduction

The growing awareness of consumers regarding proper nutrition makes them look for
food that is right for them. A balanced diet ensures that the demand for macronutrients
is met in the right proportions. It is important that the consumed food meets the energy
and physiological needs in the right portions, but at the same time ensuring a sufficient
amount of micronutrients necessary for the proper functioning of our body [1–4]. Numer-
ous recent studies have focused on the enrichment of food products in various bioactive
compounds [5]. Improving the nutritional value was also attempted by decreasing the fat
and sugar content or increasing the protein content [6–8]. The changing demands of con-
sumers looking for a “healthier” snack led to attempts to improve its nutritional value and
functional properties. Even though biscuits are not regarded as a healthy choice, they are
eagerly consumed around the world. The market of biscuits is constantly growing, which
was particularly observed in last months of COVID-19, e.g., in the United States [9,10].
Additionally, in the United Kingdom, the average consumption of confectionery products
remains at the high level of 123–137 g per person per week in 2008–2019 [11]. Therefore,
biscuits, being one of the world’s most popular staple sweets, are considered a convenient
food matrix for modification of their recipe by incorporation of various ingredients. Im-
provements in their nutritional value is achieved by adding whole grains or raw materials
rich in dietary fiber, as well as by increasing the content of protein or minerals [12–14].

The FAO-estimated population growth to 9 billion in 2050 poses new challenges
for food producers [15]. One of the main challenges will be to provide not only the
right amount of food, but also an adequate supply of protein. The application of an
unconventional source of protein—cricket powder (CP)—seems a promising approach
to food for fortification with protein, vitamins, minerals such as Ca, Mg, K, Fe, Cu, Mn,
and Zn, and dietary fiber [16–18]. The replacement of wheat flour with CP affects changes
in the quality and digestibility of the product’s protein as well as the desirable essential
amino acids profile [19]. Our previous investigations were conducted on enhancing the
nutritional value of various food products: muffins, gluten-free bread, pasta, and pork
pâtés by their supplementation with CP [20–23]. Interestingly, texture analysis showed
that in the case of gluten-free bread, the replacement of starch by CP in the amount of
up to 6% resulted in a reduction in firmness, likely due to the emulsifying properties of
cricket proteins [22]. A similar observation was also found for muffins [20]. Moreover, the
addition of CP reduced cooking losses and caused a significant increase in the firmness of
cooked pasta samples, underscoring the high quality of the CP-enriched pasta [24,25].

LF NMR is a method designed to study the dynamics of protons, that can be employed
in numerous applications [26]. Recently, there has been increasing interest in the appli-
cation of LF NMR for food analysis [27,28]. The main reason for that is the possibility to
study different processes in model food systems, including gelatinization [29,30], retrogra-
dation [31] or hydratation of starch [32], lipid oxidation [33], and enzymatic modification
of proteins [34]. Moreover, it is useful in the analysis of complex food matrices, as proton
fractions of water, lipids, or polysaccharides tend to form separate populations that relax
at significantly different rates. This allows for observation of interactions that may occur as
the product ages or is reformulated. Therefore, LF NMR has proved to be an useful tool
in the quality design of emulsions [35,36], bread [37], dough [38], pâté [21,39], and many
other food products [40]. Considering the advantages of CP, the importance of enriching
food products, and the many changes induced by enrichment and the usefulness of the LF
NMR technique in the analysis of food, this investigation was carried out to evaluate how
an addition of various levels of CP influenced the nutritional value, consumer acceptance,
textural properties, and water behavior on a molecular level of shortcake biscuits.

2. Results and Discussion
2.1. Consumer Study

The use of insects to enrich food may be negatively perceived by consumers [41].
It is extremely important to raise consumer awareness and identify potential health
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benefits [42–44]. For this reason, this study aimed to assess what level of replacement
of wheat flour (WF) with CP in biscuits would be acceptable (Figure 1). There were no
changes in the ratings of taste, texture, appearance, or the overall desirability of CP2 bis-
cuits compared to reference biscuits (R); however, further increases in the replacement of
WF with CP resulted in a significant reduction in the consumer acceptance scores awarded.
In the case of the flavor evaluation, for both CP2 and CP6, the scores were significantly
higher than for R. A small addition of CP significantly improved the flavor of the cookies.
Commercial CP was used in this study, but in order to obtain CP, crickets were processed
sequentially before being ground, including steaming, roasting, frying, and drying [45].
Technological treatment of insects can significantly improve the aroma of the resultant
CP [46], and thus increase the consumer acceptance of such enhanced products. However,
a 10% replacement of WF with CP resulted in an unpleasant, odd smell, which consumers
indicated as undesirable. As reported by Grossmann et al. [47], most of the volatile odor-
active compounds of crickets have been described as green, earthy or potato-mushroom,
but have also been associated with a description of the smell of fat, sweat, cheese or popcorn.
The volatile phenols present in crickets are responsible for the smell of smoke and feces.
Therefore, too high a concentration of compounds present in crickets is unacceptable. With
the increase in the conversion of WF to CP, biscuits more and more resembled wholemeal
flour biscuits (see Section 2.2) and although such products are commonly considered to be
more healthy [48], unfortunately this did not meet with growing marks in the consumer
assessment of the appearance of biscuits. The evaluation of the texture of the biscuits has
also changed. As in the case of flavor and appearance, texture scores also decreased with
increasing WF to CP conversion (above 6%). Gluten proteins present in WF are responsible
for creating the appropriate structure of cereal products [49]. Reducing its share in biscuits
with the addition of CP resulted in an increase in their crispness and brittleness compared
to biscuits without CP. Replacing WF with CP in the amount of 2% did not cause any
significant changes in the taste assessment. Burt et al. suggest that the primary problem
with the use of crickets in food production in Western cultures is a psychological one [50];
thus, on the basis of the obtained results, the 2% addition of CP could be fully acceptable,
and the obtained shortcake biscuits could be successfully introduced to the market.
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Figure 1. Results of consumer acceptance study. R—reference biscuits; CP2, CP6, and CP10—biscuits
with 2%, 6%, and 10% of wheat flour replacement with CP, respectively.
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2.2. Biscuits Appearance

The use of CP in the recipe of shortcake biscuits caused changes in the consumer
assessment, including when assessing for their appearance. This may be due to the
discoloration of the final products, readily visible to the naked eye (Figure 2).
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Figure 2. Biscuits with CP: R—reference biscuits; CP2, CP6, and CP10—biscuits with 2%, 6%, and
10% of wheat flour replacement with CP, respectively.

The color component analysis showed a significant darkening of the biscuits with CP
(Table 1). The more WF was replaced with CP, the darker the biscuits became (lowering the
L* value). The increase in the proportion of protein and the high-temperature process of
baking the biscuits caused the formation of colored melanoid-forming products, among
others in a Maillard reaction, but biscuits also can become darker due to the carbohydrate
transformation including caramelization [51,52]. It was observed that the color of biscuits
with the addition of CP gradually shifted in the red and blue directions (increase in red
saturation (a*) and a decrease in yellow saturation (b*)). This phenomenon contributed to
the initial increase in the whiteness index of the biscuits (CP2), that was neglected at higher
CP content due to a more substantial lightness decrease. Similar changes were observed by
Zielińska and Pankiewicz [53] in cookies enriched with Tenebrio molitor, as well as in other
cereal products enriched with CP [20,24,54].

Total color difference analysis (∆E) confirmed that the color changes caused by the
addition of CP are significant. According to Mokrzycki and Tatol [55], the higher the ∆E
value, the easier it is to observe the color difference, and untrained people can spot slight
differences above ∆E = 2.0 and clear differences above ∆E = 3.5. This was reflected by
the reduced appearance scores in the consumer analysis of biscuits containing elevated
amounts of CP (6 and 10%) and similar ones for and CP2 (Figure 1).

Table 1. Color parameters of cricket powder and biscuits.

Parameter CP R CP2 CP6 CP10

L* 52.04 ± 0.70 75.53 ± 0.28 a 73.90 ± 0.28 b 65.98 ± 0.29 c 63.29 ± 0.16 d

a* 6.02 ± 0.20 3.12 ± 0.05 d 4.17 ± 0.08 c 4.96 ± 0.02 b 5.17 ± 0.06 a

b* 14.65 ± 1.77 25.19 ± 0.93 a 22.86 ± 0.37 b 22.42 ± 0.53 b 20.47 ± 0.12 c

∆E - - 3.03 10.11 13.28
WI 49.49 64.74 65.05 58.96 57.65

Mean values in biscuits samples with the same letters in the row (a–d) were not significantly different (α = 0.05). CP—cricket powder;
R—reference biscuits; WI—whiteness index; CP2, CP6, and CP10—biscuits with 2%, 6%, and 10% of wheat flour replacement with CP,
respectively.

2.3. Nutritional Value

Insects are widely described as a good source of protein, fat and minerals [56–58], so
the use of CP can improve the nutritional value of a biscuit recipe. An increase in protein,
fat, and ash content was observed, along with an increase in the conversion of WF to
CP (Table 2). The consequence of the observed increases in their content was a gradual
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reduction in carbohydrate content. Additionally, an increase in the energy value of the
cookies was observed. The most desirable biscuit, CP2, had more energy, fat, and protein
than an average commercial biscuit. The 50 g portion of CP2 biscuits (about seven pieces)
had realized 12% of the reference intake for energy and fat and, 8% for protein, and 14%
for carbohydrates, being a nutritionally attractive sweet snack [59]. The moisture content
did not differ statistically significantly.

Table 2. Proximate composition and energy value.

Parameter R CP2 CP6 CP10

Moisture (%) 1.75 ± 0.49 a 1.65 ± 0.21 a 2.08 ± 0.31 a 1.75 ± 0.19 a

Protein (%) 6.08 ± 0.08 d 7.80 ± 0.24 d 9.24 ± 0.18 b 10.30 ± 0.09 a

Fat (%) 14.7 ± 0.4 d 16.2 ± 0.1 b 16.8 ± 0.2 b 17.5 ± 0.4 a

Ash (%) 1.01 ± 0.12 b 1.03 ± 0.03 b 1.09 ± 0.15 b 1.35 ± 0.09 a

Carbohydrates 1 (%) 76.5 ± 1.14 a 73.3 ± 1.03 c 70.8 ± 1.01 b 69.1 ± 1.15 d

Energy value 2 (kcal/100 g) 454.5 d 462.4 b 461.5 b 466.8 a

1 The carbohydrate content was estimated by subtracting the average content of ash, fat, and protein from 100%. 2 Energy value was
calculated based on the average moisture, protein, fat, and carbohydrate content. Mean values with the same letters in the row (a–d) were
not significantly different (α = 0.05). R—reference biscuits; CP2, CP6, and CP10—biscuits with 2%, 6%, and 10% of wheat flour replacement
with CP, respectively.

The content of minerals: Ca, Mg, K, Na, Cu, Fe, Mn, and Zn is presented in Table 3.
As CP is an important source of minerals, its addition to biscuits increased their elemental
profile (except for Na) [19]. The content of most minerals was higher in biscuits with
CP addition than in a commercial sample. The most significant differences between CP2
and a control sample were noticed for Ca (23%), Fe (12%), Mn (14%), and Zn (16%).
For Mg and K the content changed by 6% and 7%, respectively. However, a nutritional
claim on “source of mineral” could only apply to Mn in CP6 or Cu, Mn, and Zn in CP10
which were scored significantly lower in a sensory test [59,60]. The content of Na was
comparable (302–323 mg/100 g) in all biscuits and resulted from the salt (sodium chloride)
addition to the biscuit dough. Generally, the worldwide intake of Na is above nutritional
recommendations, so it is suggested to lower its content in food products [61]. On the
other hand, salt plays an extremely important role in sensory attributes of food products,
so it is added to most of food categories. All products under the study, despite delivering
10–11% of adequate intake (AI) for Na in 50 g portion, would fulfill the clearly defined
and rigorous latest British targets for salt reduction (maximum of 340 mg of Na/100 g in a
category of biscuits) [62]. Moreover, the portion of CP2 biscuits provided 10% of nutrient
reference value/adequate intake (NRV/AI) for Mn, 4% for Zn, 2% for Ca, Cu, Fe, and K,
and 1% for Mg. In general, bakery confectionary products are not regarded as a source of
minerals, so those developed with CP addition can be regarded as a healthier option than
commercial ones.

Table 3. Mineral composition (expressed as mg per 100 g of biscuits).

Mineral NRV/AI (mg/Day) R
(mg/100)

CP2
(mg/100 g)

CP6
(mg/100 g)

CP10
(mg/100 g)

Ca 800 31.4 ± 1.8 d 38.5 ± 2.0 c 53.2 ± 0.9 b 67.0 ± 3.2 a

Mg 375 10.4 ± 0.1 d 11.1 ± 0.2 c 13.6 ± 0.1 b 17.6 ± 1.0 a

K 3500 102.6 ± 1.0 d 109.8 ± 2.2 c 137.8 ± 4.4 b 152.3 ± 11.0 a

Na 1500 323.1 ± 10.3 a 310.2 ± 9.1 b 302.0 ± 8.3 b 310.6 ± 11.9 b

Cu 1 0.021 ± 0.001 d 0.044 ± 0.004 c 0.106 ± 0.007 b 0.196 ± 0.006 a

Fe 14 0.536 ± 0.017 d 0.602 ± 0.014 c 0.662 ± 0.027 b 0.786 ± 0.039 a

Mn 2 0.191 ± 0.004 d 0.216 ± 0.009 c 0.310 ± 0.010 b 0.365 ± 0.008 a

Zn 10 0.706 ± 0.003 d 0.819 ± 0.051 c 1.23 ± 0.08 b 1.61 ± 0.07 a

NRV—nutrient reference value (for Ca, Mg, Cu, Fe, Mn, Zn), AI—adequate intake (for K, Na); Mean values with the same letters in the row
(a–d) were not significantly different (α = 0.05). R—reference biscuits; CP2, CP6, and CP10—biscuits with 2%, 6%, and 10% of wheat flour
replacement with CP, respectively.
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The literature data indicate that crickets are a good source of fat; therefore, a change in
the fatty acid profile in finished products was expected. Udomsil et al. [63] indicated that
in the fats of crickets, the most abundant are saturated fatty acids (SFA), mainly palmitic
acid (C16:0) and stearic acid (C18:0), and of monounsaturated fatty acids (MUFA), oleic
acid (C18:1). There are also polyunsaturated fatty acids (PUFA), such as linolenic acid
(C18:3) and linoleic acid (C18:2). Importantly, other studies have shown that the fatty acid
profile does not differ across the tissues of the cricket that are eaten [64]. The test results
confirmed the expected changes in the fatty acid profile (Table 4). A slight increase in the
share of MUFA and PUFA was observed along with the increase in the replacement of WF
with CP. Unfortunately, due to the use of large amounts of baking margarine in the recipe
of cookies (see Section 3.1) produced from vegetable oils in varying proportions (palm,
rapeseed, sunflower), it cannot be concluded that the nutritional value of CP cookies in the
context of fatty acids is improved. Nevertheless, it can be expected that, similar to other
low-fat products (e.g., pasta or bread), it will be possible to improve the nutritional value
of the biscuits.

Table 4. Fatty acid composition of biscuits enriched with CP (as a percentage of total fatty acids).

Fatty Acid R CP2 CP6 CP10

C 8:0 0.482 ± 0.002 a 0.477 ± 0.016 b 0.479 ± 0.013 b 0.487 ± 0.001 a

C 10:0 0.463 ± 0.005 b 0.453 ± 0.013 b 0.448 ± 0.009 a 0.448 ± 0.005 a

C 12:0 6.340 ± 0.002 a 6.179 ± 0.064 b 6.102 ± 0.085 b 6.100 ± 0.015 b

C 14:0 2.863 ± 0.004 a 2.837 ± 0.008 b 2.810 ± 0.013 b 2.803 ± 0.002 b

C 16:0 31.223 ± 0.019 b 31.629 ± 0.063 a 31.560 ± 0.033 a 31.343 ± 0.197 b

C 16:1 0.159 ± 0.045 a 0.130 ± 0.001 b 0.129 ± 0.003 b 0.133 ± 0.001 b

C 18:0 3.855 ± 0.029 c 3.956 ± 0.004 b 4.014 ± 0.027 b 4.044 ± 0.001 a

C 18:1 31.401 ± 0.024 a 31.218 ± 0.025 b 31.123 ± 0.080 b 31.146 ± 0.120 b

C 18:2 21.311 ± 0.032 a 21.288 ± 0.061 a 21.502 ± 0.049 b 21.655 ± 0.042 c

C 18:3 1.058 ± 0.021 c 1.055 ± 0.046 c 1.093 ± 0.006 b 1.126 ± 0.008 a

C 20:0 0.667 ± 0.010 a 0.603 ± 0.005 b 0.556 ± 0.007 c 0.548 ± 0.065 c

C 22:0 0.175 ± 0.016 b 0.175 ± 0.025 b 0.182 ± 0.030 a 0.170 ± 0.002 b

Σ SFA 46.069 ± 0.016 46.308 ± 0.131 46.151 ± 0.023 45.941 ± 0.152
Σ MUFA 31.561 ± 0.069 31.347 ± 0.024 31.253 ± 0.077 31.278 ± 0.118
Σ PUFA 22.370 ± 0.053 22.344 ± 0.107 22.596 ± 0.055 22.781 ± 0.034

Mean values with the same letters in the row (a–c) were not significantly different (α = 0.05). R—reference biscuits; CP2, CP6, and
CP10—biscuits with 2%, 6%, and 10% of wheat flour replacement with CP, respectively.

The amino acid profile is presented in Table 5. Along with the increase in the amount
of CP in the biscuit recipe, a higher content of all analyzed amino acids was observed,
except for phenylalanine and methionine. It is well known that the major amino acids
in cereal prolamins are proline and glutamine [65], which is in line with the results of
our research. The lowest-content essential amino acid in grains, in particular wheat, is
lysine, and next up is threonine [66]. It has been noticed that even a 2% incorporation of
CP into biscuit formula led to an increase in the content of essential amino acids by 13.6%.
In comparison to the control sample (R), the content of lysine in the samples CP2, CP6,
CP10 increased by almost 40%, 83.5%, and 108.3%, respectively. Moreover, in the case
of analyzed biscuits samples, the concentration of threonine increased by an average of
31.3%. It should be noted that the higher lysine and arginine contents led to increased
susceptibility of flour to the progress of the Maillard reaction [67]. The drawback is that
some of the Maillard reaction products (MRPs) are currently suspected to have deleterious
health effects. The accumulation of MRPs in vivo has been implicated as a major pathogenic
process in diabetic complications and other disorders, such as atherosclerosis, Alzheimer’s
disease, and normal aging [68].Thus, due to the possibility of the potentially harmful
Maillard reaction compounds formation, it is worth noting to control their levels by the
recipe’s modification, e.g., adding functional ingredients and/or different flours sources,
especially in cereal products such as cereal products biscuits, and bread [69].
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Table 5. Amino acids profile expressed as mg per g of biscuits.

Amino Acid R CP2 CP6 CP10

Essential amino acids

Histidine 1.48 ± 0.01 d 1.64 ± 0.03 c 1.90 ± 0.01 b 2.05 ± 0.02 a

Isoleucine 2.65 ± 0.17 c 2.78 ± 0.20 c 3.43 ± 0.08 b 3.70 ± 0.06 a

Leucine 4.91 ± 0.07 d 5.44 ± 0.21 c 6.37 ± 0.11 b 6.65 ± 0.07 a

Lysine 1.33 ± 0.05 d 1.86 ± 0.03 c 2.44 ± 0.05 b 2.77 ± 0.01 a

Cysteine 3.75 ± 0.08 d 4.36 ± 0.01 a 4.10 ± 0.05 b 3.93 ± 0.02 c

Methionine 1.12 ± 0.05 c 1.32 ± 0.14 b 1.51 ± 0.02 a 1.57 ± 0.03 a

Phenylalanine 3.31 ± 0.13 c 3.79 ± 0.11 b 4.04 ± 0.17 ab 4.30 ± 0.11 a

Tyrosine 2.27 ± 0.02 d 2.65 ± 0.03 c 3.12 ± 0.01 b 3.39 ± 0.01 a

Threonine 2.33 ± 0.02 d 2.58 ± 0.07 c 3.15 ± 0.01 b 3.45 ± 0.02 a

Tryptophan 0.102 ± 0.003 d 0.138 ± 0.003 c 0.356 ± 0.002 b 0.399 ± 0.005 a

Valine 2.93 ± 0.04 d 3.18 ± 0.09 c 4.07 ± 0.01 b 4.48 ± 0.04 a

Σ EAA * 26.18 29.74 34.49 36.69

Dispensable amino acids

Alanine 1.23 ± 0.01 d 1.78 ± 0.04 c 2.30 ± 0.01 b 2.94 ± 0.01 a

Arginine 2.13 ± 0.06 d 2.48 ± 0.05 c 3.26 ± 0.02 b 3.79 ± 0.02 a

Aspartic acid 4.70 ± 0.11 d 6.05 ± 0.04 c 6.84 ± 0.05 b 8.89 ± 0.06 a

Glutamic acid 22.02 ± 0.12 d 23.19 ± 0.28 c 22.70 ± 0.08 b 24.79 ± 0.08 a

Glycine 2.14 ± 0.01 d 2.53 ± 0.04 c 3.16 ± 0.02 b 3.64 ± 0.02 a

Proline 6.86 ± 0.04 d 7.23 ± 0.03 c 7.87 ± 0.06 b 8.08 ± 0.02 a

Serine 3.76 ± 0.01 d 4.41 ± 0.12 c 4.73 ± 0.03 b 5.12 ± 0.01 a

Σ DAA * 42.84 47.67 50.86 57.25

* sums were calculated from the mean values. Mean values with the same letters in the row (a–d) were not significantly different (α = 0.05).
R—reference biscuits; CP2, CP6, and CP10—biscuits with 2%, 6%, and 10% of wheat flour replacement with CP, respectively.

2.4. Physical Properties

The physical properties of the obtained biscuits were analyzed by characterizing
their dimensions, weight, and texture (Table 6). The weight and thickness of the biscuits
obtained did not differ significantly across the variants (α = 0.05); however, it was found
that the addition of CP caused an increase in the diameter of the biscuits. Gluten proteins
present in WF (replaced with CP) are responsible for the proper consistency and structure
of the dough [70,71]. The observed increase in diameter may be caused by a reduction
in the content of gluten proteins in the dough, which does not maintain its shape during
preparation and baking. One of the parameters describing the quality of shortcake bis-
cuits is the spread ratio. The larger the diameter to thickness ratio, the better the biscuit
quality [72]. The overall spread ratio increased with the addition of CP and ranged from
6.30 for R to 7.75 for CP10. A significantly lower spread ratio in the case of R may result
from a stronger binding by the action of gluten proteins, creating a dough with higher
compactness. Literature data indicated that the addition of vegetable proteins, which bind
water and other biopolymers, reduced the spread ratio and, on the other hand, increased
the thickness of the biscuits [73–75]. According to Kulkarnia et al. [76], an increase in the
biscuits spread ratio may indicate a poor connection of the protein and carbohydrate net-
works in the biscuits. These two components are important nutrients, but from a physical
point of view, their interaction with one another can cause changes in the hardness of the
biscuits. As expected, it was noted that replacing WF with CP resulted in a successive
reduction in the hardness of the biscuits from 29.44 N for R to 24.50 N for CP10. The
reduction in hardness can be explained by the uneven mixing process and the potential
uneven distribution of the added ingredients, which may result in limiting the availability
of water for proteins, which should be hydrated during the preparation of the dough. Too
little water or additional dough ingredients such as fat and sugar prevent the proteins
from being properly hydrated. The dough from which the biscuits are made is high in
both sugar and fat and low in water, resulting in a dough with a sticky and consistent
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character and, consequently, increased hardness [77,78]. These results are in line with other
studies by Ho and Abdul-Latif [74] and Chauhan et al. [79] who noted that replacing WF
with other flours, and thus reducing the amount of gluten in the dough, also resulted in a
reduction in the hardness of the biscuits.

Table 6. Physical properties of biscuits.

Parameter R CP2 CP6 CP10

Weight (g) 7.21 ± 0.30 a 7.55 ± 0.37 a 7.54 ± 0.45 a 7.46 ± 0.29 a

Diameter (cm) 4.54 ± 0.21 b 4.63 ± 0.30 b 4.79 ± 0.17 ab 4.88 ± 0.18 a

Thickness (cm) 0.72 ± 0.06 a 0.65 ± 0.05 a 0.65 ± 0.07 a 0.63 ± 0.06 a

Spread Ratio (–) 6.30 ± 0.12 7.12 ± 0.03 7.40 ± 0.08 7.75 ± 0.09
Firmness (N) 29.44 ± 3.07 a 25.44 ± 6.80 ab 25.22 ± 5.16 ab 24.50 ± 2.56 b

Mean values with the same letters in the row (a–b) were not significantly different (α = 0.05). R—reference biscuits; CP2, CP6, and
CP10—biscuits with 2%, 6%, and 10% of wheat flour replacement with CP, respectively.

2.5. Water Behavior

Measurements of the relaxation parameters revealed two CPMG (Carr-Purcell-Meiboom-
Gill) proton populations and one FID (free induction decay) proton population. This is
expected for low moisture products that are rich in carbohydrates and fats. In fresh dough
samples with water content significantly above 50%, up to three CPMG proton populations
can be observed T21 (<10 ms), T22 (20–50 ms) and T23 (>100 ms), namely tightly, less tightly,
and weakly bound water, respectively. As the water content in dough decreases below
50%, the T23 component disappears, as there is no longer an excess of water in the system.
Moreover, T21 and T22 components tend to merge, forming one proton population [38].
This is not the case for shortcake biscuits, as both short T21 (Figure 3A) and long T22
(Figure 3B) components of spin–spin relaxation time could be observed. Shortcake biscuits
are characterized by a very low water content <2%, so one can expect that it will be bound
very “tightly”, meaning that the T21 will correspond to the amount of water present in the
system. Therefore, T22 will rather correspond to the amount of starch and fat in the system
as those ingredients are present in large quantities and are the most proton abundant. This
is in accordance with literature data, as for pure fat or fat in emulsion, relaxation times are
estimated between 40–100 ms [36], whereas for pure starch the relaxation time may range
between 40–180 ms (depending on water content) [80]. The presence of one spin–lattice
relaxation time, T1 (Figure 3C), is once again conditioned by the low amount of water in the
system. Starches at hydration levels below 10% are characterized by only one component
of spin–lattice relaxation time; above that value, when bulk water starts to be present in the
system, a long component of relaxation time T12 can be separated [80].

A reduction in the value of short components of the spin–spin relaxation times T21 is
observed in the samples containing CP, compared to the reference sample R. This indicates
limiting the dynamics of water molecules bound to the polymer matrix. This phenomenon
may be attributed to the inclusion of cricket proteins as the behavior of water in food is
significantly affected by the solubility of proteins, which consists of hydrophobic (protein–
protein) and hydrophilic (protein–solvent) interactions [81]. Literature data indicate that
CP is hydrophilic in nature [82], which limits the amount of water hydrating the proteins
and starch of WF [22]. This corresponds to changes in firmness (Table 6), as it has followed
the same manner as T21, suggesting that the addition of CP that causes decrease of water
mobility results in softer texture of obtained biscuits, which were more fragile.

In contrast to short components, the long components of spin–spin relaxation time
increased in samples where part of the WF was replaced with CP. This is the effect of an
increase in fat content in samples containing more CP. The lack of a further increase in T22
with the increase in CP should be attributed to an overall lower amount of carbohydrates
and fats. This is because of the fact that fat is a more proton-dense ingredient than starch,
whereas a 10% replacement of WF with CP results in an over 5% reduction in sum of
carbohydrates and fats.
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From the point of view of the molecular properties of water, replacing a part of
WF with CP reduces the binding of H2O molecules with biopolymers. This is normally
manifested by an increase in the value of spin–lattice T1 relaxation times [83,84]; however, in
shortcake biscuits, water molecules are present in relatively small quantities in comparison
to starch or fat.
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Figure 3. Results of relaxation times. R—reference biscuits; CP2, CP6, and CP10—biscuits with
2%, 6%, and 10% of wheat flour replacement by CP, respectively. (A)—results of short component
spin–spin relaxation time. (B)—results of long component spin–spin relaxation time. (C)—results of
spin–lattice relaxation time.
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The smallest 2% replacement of WF with CP caused a significant increase in the T1
value compared with the R. This should be normally interpreted as an increase in the
amount of bulk water compared to bound one, but CP2 was characterized by the lowest
water content, so one should assume that any water present will be completely bound. In
the samples CP6 and CP10, the values were comparable with those observed for R. This
result does not allow for an unambiguous interpretation of the effect of CP and the removal
of part of the WF on quantitative changes in water binding in the recipe-modified cookie;
however, these irregular changes in the values of spin-lattice relaxation times are confirmed
by the results of the equilibrium analysis of the water activity (ar) of the biscuits (Table 7).
Taking into consideration the changes in water activity, water content, and spin–lattice
relaxation time, it can be concluded that the sole implementation of CP in the recipe of WF
shortcake biscuits causes interactions that decrease the binding of water at a molecular level.
However, an increase in the replacement ratio of WF to CP reverses this effect. Although,
due to low water content in the final product, this phenomenon was not reflected in texture
analysis, it was noticed by consumers, as indicated by texture acceptance.

Table 7. Results of water activity in biscuits.

Parameter R CP2 CP6 CP10

water activity ar (-) 0.3123 ± 0.0012 b 0.4098 ± 0.0012 a 0.2522 ± 0.0038 c 0.1940 ± 0.0008 d

transport rate VD (s−1) 0.0296 ± 0.0022 a 0.0228 ± 0.0023 c 0.0260 ± 0.0031 b 0.0263 ± 0.0023 b

Mean values with the same letters in the row (a–d) were not significantly different (α = 0.05). R—reference biscuits; CP2, CP6, and
CP10—biscuits with 2%, 6%, and 10% of wheat flour replacement with CP, respectively.

A correlation was found between T1 and ar (Figure 4). The increase in the equilibrium
water activity in the product determines the increase in the amount of bulk water compared
to the amount of bound water. The mobility of the molecules of both water fractions is
reflected in the values of the spin–spin relaxation time components. Linear correlations
were found between the transport rate of water in the system (VD) and the mobility of
rotational movements of bulk and bound water molecules (Figure 5). As the translational
movement rate of the water molecules in the product increases, the possibility of rotational
movements of the water molecules in the bulk fraction decreases, and at the same time, the
bound fraction molecules achieve a greater possibility of rotational movements around the
water–polymer matrix bond.
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3. Materials and Methods
3.1. Shortcake Biscuits Manufacturing

The recipe for reference biscuits (denoted as R in the text) was as follows: 200 g
wheat flour (type 500) (GoodMills Polska sp. z o.o., Grodzisk Wielkopolski, Poland), 64 g
white sugar (Pfeifer & Langen Polska S.A., Środa Wielkopolska, Poland), 20 g brown
sugar (Pfeifer & Langen Polska S.A., Środa Wielkopolska, Poland), 2 g milk powder
(SM Mlekovita, Wysokie Mazowieckie, Poland), 2.5 g salt (Kopalnia Soli ‘Kłodawa’ S.A.,
Kłodawa, Poland), 2 g baking powder (Dr. Oetker Polska Sp. z o.o., Gdańsk, Poland),
80 g baking margarine (Upfield Polska sp. z o.o., Warsaw, Poland), and 44 g water. In
the test samples, wheat flour was replaced with cricket powder (Crunchy Critters, Derby,
UK) in three different quantities of 2%, 6%, and 10% (w/w) and denoted as CP2, CP6, and
CP10, respectively. The amounts of other components were unchanged. The composition
of CP (determined in a previously published study [16]) is: protein 42.0 ± 0.4 [%]; fat
29.1 ± 0.6 [%]; 3.6 ± 0.3 [%]; fiber 3.5 ± 0.02; and carbohydrate 21.8 ± 0.8 [%]. All the dry
compounds were mixed together with the KitchenAid mixer (5KPM5EWH, KitchenAid,
Greenville, OH, USA) for 3 min. Water was then added and mixing continued for another
1 min. The dough was rolled into 2 mm thick sheets, rounded shapes were cut with a
Ø60 mm cookie cutter and placed in an aluminum tray. The position of biscuits on baking
trays was the same for all variations. Biscuits were baked at 205 ◦C (MIWE Condo, MIWE
Michael Wenz GmbH, Amstein, Germany) for 11 min, and then allowed to cool at room
temperature for 15 min. The cool biscuits were packed in polypropylene pouches and
stored at room temperature in darkness until analysis.

3.2. Consumer Acceptance

The rating of consumer acceptance was assessed by using the 9-point hedonic line
scale (ranging from 1 “dislike very much” to 9 “like very much”) [85]. In this study,
sixty-five untrained panelists, aged between twenty-six and forty-five, were invited to par-
ticipate. The study involved 29 men and 36 women, students and employees of the Poznań
University of Life Sciences (Poznań, Poland), who expressed a voluntary willingness to
participate. Consumers were asked to evaluate the appearance, flavor, taste, texture, and
overall rating of analyzed biscuits.
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3.3. Color Measurements

A Chroma Meter CR-410 (Konica Minolta Sensing Inc., Tokyo, Japan) was used for the
color measurements of biscuits [20]. Differences in color were recorded in CIE L*a*b* scale
in terms of lightness (L*) and color (a*—redness; b*—yellowness). Analysis was repeated
10 times for each sample. The total color difference (∆E) and whiteness index (WI) was
calculated, with the R values used as baseline for all CP variants:

∆E =
√

∆L∗2 + ∆a∗2 + ∆b∗2

WI = 100−
√
(100− L∗)2 + a∗2 + b∗2

3.4. Proximate Composition and Energy Value

Determination of the moisture was carried out in accordance with the AACC 44-19.01
method [86]. Total nitrogen content was determined by the Kjeldahl method according
to ISO 20483 [87] and was used to calculate the protein content by multiplying the result
by the conversion factor of 5.7, suitable for wheat [88] and recommended by Ritvanen
et al. [89] for crickets. The fat content was determined (Soxhlet method) according to AACC
30-25.01 [90], and ash content according to AACC Method 08-12.01 [91]. Moreover, the
proximate carbohydrate content was estimated by subtracting the total fat, protein, ash,
and moisture content from 100%. The ash, carbohydrate, fat, and protein contents were
presented on a dry weight basis. The energy value (EV) was calculated with the following
formula:

EV (kcal/100 g) = 4 × protein (%) + 4 × carbohydrate (%) + 9 × fat (%)

3.5. Minerals Content

The concentrations of the minerals Ca, Cu, Fe, K, Mg, Mn, Na, and Zn were determined
using flame atomic absorption spectroscopy (F-AAS; SpectrAA-800, Varian, Palo Alto, CA,
USA) preceded by microwave mineralization with nitric acid [92]. The recommendations
for Ca, Cu, Fe, Mg, Mn, and Zn were established at the level of Nutrient Reference Value
(NRV) [93]. The contents of minerals were expressed in g/100 g of the sample.

3.6. Amino Acid Composition

Samples before analysis of the amino acid profile were subjected to acidic hydrolysis in
6 M HCl under nitrogen at 110 ◦C for 24 h with modifications as reported by Kwanyuen and
Burton [94]. The contents of amino acids were determined as derivatives of phenylisothio-
cyanate (PITC) according to the procedure described by Polanowska et al. [95] Norleucine
(500 nM) was added as internal standard. The tryptophan content was examined after
alkaline hydrolysis of proteins in 4 M NaOH at 110 ◦C for 18 h under nitrogen according
to the method proposed by Çevikkalp et al. [96] The analysis was performed using LC
Agilent Technologies 1200 Rapid Resolution (Santa Clara, CA, USA) system equipped with
a UV-Vis detector DAD 1260 (Agilent Technologies, Santa Clara, CA, USA) and a reversed-
phase column Zorbax Eclipse Plus C18 (4.6 × 150 mm, 5 µm) (Agilent Technologies, Santa
Clara, CA, USA).

3.7. Fatty Acid Composition Analysis

Fat was extracted from the biscuits using the standard procedure described by Folch
et al. [97] and the fatty acid composition was determined according to the AOCS Official
Method Ce 1 h-05 [98] according to the parameters described in detail previously [54] with
an Agilent 7820A GC (Agilent Technologies, Santa Clara, CA, USA) equipped with a flame
ionization detector (FID) and SLB-IL111 capillary column (Supelco, Bellefonte, PA, USA)
(100 m, 0.25 mm, 0.20 µm). The results were expressed as a percentage of total fatty acids.
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3.8. Texture Analysis

A TA.XTplus texture analyzer (Stable Micro Systems Co. Ltd., Godalming, UK)
equipped with a load cell of 5 kg was used to determine the texture properties of biscuits.
Hardness was determined by the bend test, using the 3-point bend rig HDP/3PB (Stable
Micro Systems Co. Ltd., Godalming, UK) with the following settings: pre-test speed of
5 mm/s, test speed of 3 mm/s, post-test speed of 10 mm/s, distance of 5 mm and distance
between the supports of 2 cm [99]. At least 10 biscuit measurements were taken for each
batch. Each biscuit was compressed once and maximum force was recorded.

3.9. LF NMR Relaxometry

Biscuit samples were placed in Ø8 mm measuring tubes. The height of the sample in
the tube was set at 15 mm. After placing the samples, the tubes were closed with Parafilm®

and measurements were made.
1H NMR relaxation times (spin–lattice (T1) and spin–spin (T2)) were analyzed with a

pulse NMR spectrometer PS15T operating at 15 MHz (Ellab, Poznań, Poland) at 21.0 ± 0.5 ◦C.
The inversion–recovery (π − τ − π/2) [100] pulse sequence was applied for measurements
of the T1 relaxation times. Distances between RF pulses (τ) were changed within the range
from 0.5 to 50 ms and the repetition time was from 15 s. Each time, 32 FID signals and
110 points from each FID signal were collected. Calculations of the spin–lattice relaxation
time values were performed with the assistance of the CracSpin program [101].

Measurements of the spin–spin (T2) relaxation times were taken using the pulse train
of the Carr–Purcell–Meiboom–Gill spin echoes (π/2 − TE/2 − (π)n [100]. The distance
(TE) between π RF pulses ranged from 0.1 to 1.0 ms. The repetition time was 15 s. The
number of spin echoes (n) amounted to 100. Five accumulation signals were employed. The
calculations were performed by using the dedicated software by application of a non-linear
least-square algorithm.

3.10. Water Activity

Rollers 1 cm thick and 2 cm in diameter, each cut from the tested product, were used
for the measurements. The sample was placed in the measurement chamber. The analysis
was performed by using water diffusion and activity analyzer ADA-7 (COBRABID, Poznań,
Poland) with a sample temperature control panel. The analyzer is equipped with dedicated
software to record temporary water activity during water evacuation process [34]. All
measurements were performed at 21.0 ± 0.2 ◦C. The duration of one measurement was set
to 1000 s. Based on the obtained curves, the equilibrium value of water activity aw in the
product and the transport rate VD were determined. All presented results are mean values
(n = 7) and standard deviation.

3.11. Statistical Analysis

Each biscuit variant was analyzed in three samples, with triple measurement of
each, unless stated otherwise. One-way analysis of variance (ANOVA) was carried out
independently for each dependent variable. A post hoc Tukey HSD multiple comparison
test was used to identify statistically homogeneous subsets at α = 0.05. Moreover, the
Pearson correlation coefficient was calculated between relaxation times and water activity
parameters. Statistical analysis was performed with Statistica 13 software (Dell Software
Inc., Round Rock, TX, USA).

4. Conclusions

Partial replacement of wheat flour with cricket powder in biscuits and other food
products augmented their physical properties as well as their nutritional and functional
values. A small (2%) addition of CP improved the ratings for flavor, texture, appearance,
and the overall desirability of biscuits. However, further addition of CP (6% and 10%)
resulted in significantly lower scores in consumer test. CP2 delivered 462 kcal, 7.8 g protein,
16.2 g fat, and 73 g carbohydrates in 100 g. Moreover, it had higher content of minerals:



Molecules 2021, 26, 5417 14 of 18

Ca (↑23%), Zn (↑16%), Mn (↑14%), Fe (↑12%), K (↑7%), and Mg (↑6%) than the commercial
(control) product.

Changes were also observed in the physical properties of the biscuits. Replacing wheat
flour with cricket powder resulted in a successive reduction in the hardness of cookies from
29.44 N for R to 24.50 N for CP10. A decrease in the values of the short components of the
T21 spin–spin relaxation times was also observed in the samples containing CP compared to
the reference sample R, measured by LF NMR, which indicates a reduction in the dynamics
of water molecules bound to the polymer matrix. Due to the increase in the fat content of
CP biscuits as opposed to the short ones, the long spin–spin relaxation time components
increased in samples where some flour was replaced by CP. Nevertheless, on the basis of
the results, it was found that the obtained shortbreads with a 2% CP addition could be
successfully marketed. Moreover, the use of products with such superior characteristics as
edible insects poses a viable scenario for the future demands of growing human population.
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24. Duda, A.; Adamczak, J.; Chełmińska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and Nutritional/Textural Properties of Durum
Wheat Pasta Enriched with Cricket Powder. Foods 2019, 8, 46. [CrossRef]

25. Bruneel, C.; Pareyt, B.; Brijs, K.; Delcour, J.A. The impact of the protein network on the pasting and cooking properties of dry
pasta products. Food Chem. 2010, 120, 371–378. [CrossRef]

26. Małyszek, Z.; Lewandowicz, J.; Le Thanh-Blicharz, J.; Walkowiak, K.; Kowalczewski, P.Ł.; Baranowska, H.M. Water Behavior of
Emulsions Stabilized by Modified Potato Starch. Polymers 2021, 13, 2200. [CrossRef]

27. Kamal, T.; Cheng, S.; Khan, I.A.; Nawab, K.; Zhang, T.; Song, Y.; Wang, S.; Nadeem, M.; Riaz, M.; Khan, M.A.U.; et al. Potential
uses of LF-NMR and MRI in the study of water dynamics and quality measurement of fruits and vegetables. J. Food Process.
Preserv. 2019, 43, e14202. [CrossRef]

28. Ezeanaka, M.C.; Nsor-Atindana, J.; Zhang, M. Online Low-field Nuclear Magnetic Resonance (LF-NMR) and Magnetic Resonance
Imaging (MRI) for Food Quality Optimization in Food Processing. Food Bioprocess Technol. 2019, 12, 1435–1451. [CrossRef]

29. Lewandowicz, J.; Baranowska, H.M.; Szwengiel, A.; Le Thanh-Blicharz, J. Molecular structure vs. Functional properties of waxy
and normal corn starch. In Proceedings of the 12th International Conference on Polysaccharides-Glycoscience, Prague, Czech
Republic, 19–21 October 2016; Rapkova, R., Copikova, J., Sarka, E., Eds.; Czech Chemical Society: Prague, Czech Republic, 2016;
pp. 53–57.

30. Lewandowicz, J.; Ostrowska-Ligeza, E.; Baranowska, H.M. Gelatinization of Starch: A Comparative Study of Viscographic,
Differential Scanning Calorimetry and Low Field NMR Analyses. In Proceedings of the 16th International Conference on
Polysaccharides-Glycoscience, Prague, Czech Republic, 4–6 November 2020; Rapkova, R., Copikova, J., Sarka, E., Eds.; Czech
Chemical Society: Prague, Czech Republic, 2020; pp. 9–14.

31. Sikora, M.; Krystyjan, M.; Dobosz, A.; Tomasik, P.; Walkowiak, K.; Masewicz, Ł.; Kowalczewski, P.Ł.; Baranowska, H.M. Molecular
Analysis of Retrogradation of Corn Starches. Polymers 2019, 11, 1764. [CrossRef] [PubMed]

32. Masewicz, L.; Pers, K.; Le Thanh-Blicharz, J.; Lewandowicz, J.; Baranowska, H.M. The effect of degree of substitution on dynamics
of molecules of hydration water in acetylated distarch adipate powders. In Proceedings of the 13th International Conference on
Polysaccharides-Glycoscience, Prague, Czech Republic, 9–10 November 2017; Rapkova, R., Copikova, J., Sarka, E., Eds.; Czech
Chemical Society: Prague, Czech Republic, 2017; pp. 29–32.

33. Resende, M.T.; Osheter, T.; Linder, C.; Wiesman, Z. Proton Low Field NMR Relaxation Time Domain Sensor for Monitoring of
Oxidation Stability of PUFA-Rich Oils and Emulsion Products. Foods 2021, 10, 1385. [CrossRef] [PubMed]

34. Stangierski, J.; Rezler, R.; Baranowska, H.M.; Poliszko, S. Effect of enzymatic modification on chicken surimi. Czech J. Food Sci.
2012, 30, 404–411. [CrossRef]

35. Baranowska, H.M.; Rezler, R. Water binding analysis of fat-water emulsions. Food Sci. Biotechnol. 2015, 24, 1921–1925. [CrossRef]
36. Le Thanh-Blicharz, J. The Influence of the Physicochemical Properties and Structure of Modified Starches on Their Functionality in the

Formation and Stabilization of Food Emulsions; Wydawnictwo Uniwerystetu Przyrodniczego w Poznaniu: Poznań, Poland, 2018;
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