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Abstract: Dental age is one of the most reliable methods for determining a patient’s age. The timing
of teething, the period of tooth replacement, or the degree of tooth attrition is an important diagnostic
factor in the assessment of an individual’s developmental age. It is used in orthodontics, pediatric
dentistry, endocrinology, forensic medicine, and pathomorphology, but also in scenarios regarding
international adoptions and illegal immigrants. The methods used to date are time-consuming and
not very precise. For this reason, artificial intelligence methods are increasingly used to estimate the
age of a patient. The present work is a continuation of the work of Zaborowicz et al. In the presented
research, a set of 21 original indicators was used to create deep neural network models. The aim of
this study was to verify the ability to generate a more accurate deep neural network model compared
to models produced previously. The quality parameters of the produced models were as follows.
The MAE error of the produced models, depending on the learning set used, was between 2.34 and
4.61 months, while the RMSE error was between 5.58 and 7.49 months. The correlation coefficient R2

ranged from 0.92 to 0.96.

Keywords: chronological age; dental age; age assessment; digital pantomography; digital image
analysis; artificial intelligence; deep neural network

1. Introduction

Dental age is one of the most reliable methods for determining the maturity of an
organism [1]. It is extremely useful in areas such as orthodontics, pediatric dentistry,
endocrinology, anthropology, or forensic medicine [2–9]. It allows us to determine whether
the body is developing properly and when a pubertal growth spurt occurs. Moreover, the
dental age assessment can be used to determine the age of individuals without identification
documents or those suspected of having falsified documents, with memory loss, illegal
immigrants, or international adoptions [10,11].

Age determination using pantomographic radiographs is an easy, widely available,
and low-cost method. In children, the developmental stages of tooth buds, mineralization
of crowns and roots, and the eruption stages of teeth can be assessed [12–14]. In the elderly,
changes in the dentition are not very noticeable, thus age assessment is much more difficult.
However, it is possible to take advantage of the fact that, with age, odontoblasts deposit
more and more secondary dentin, causing a reduction in pulp chamber volume. Methods
that analyze the alveolar bone level have also been described [15–17].

The commonly used methods to determine dental age, such as Demirjian’s method,
Schour and Massler’s method, Ubelaker’s method, Moorres’, Fanning and Hunt’s method,
Noll’s method, or Gustafson and Koch’s method, are methods developed in the previous
century [13,18–22]. The phenomenon of acceleration, or growth spurt, occurring in the
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population makes these methods inaccurate. Therefore, there are noticeable discrepancies
between the chronological age and the age determined from the developed tables, atlases,
and charts [23–26].

Determining the dental age based on tables and charts is also time-consuming and
subjective. The doctor themselves must compare the degree of development of the buds of
most teeth on the patient’s pantomographic image with the images presented in the studies.

Taking into account the limitations of the methods used to date and the individual
variability of the human body, the search began for objective methods which do not require
the involvement of a physician in the assessment of the patient’s age and which can cope
with non-linear biological issues. Innovations in the field of computer science, including
methods of artificial intelligence, are increasingly used in medicine. They support diagnosis
and improve treatment efficiency [27–45].

In scientific databases such as Web of Science and Scopus, one can find many pa-
pers confirming the effectiveness and efficiency of artificial neural networks in dentistry,
including the assessment of dental age.

The application of artificial neural networks in information and image processing
in dentistry was presented by Kim et al. in 2021 [46]. They investigated the estimation
of age groups by applying a conventional neural network (CNN) using X-ray images of
first molars on pantomographic images. The data set consisted of images of maxillary
and mandibular first molars on the right and left sides. In total, 1586 pantomographic
images were used in the study. The conventional neural network produced was shown
to focus on anatomical parameters such as the dental pulp chamber, alveolar bone level,
and interdental space. The efficiency of the networks generated in this way was very high,
ranging between 87.04 and 88.33%. It was also shown that there were slight differences
depending on the location of the first molar.

The team of Farhadian et al. [47] presented another example of the use of artificial
intelligence in the assessment of dental age. The study used 300 scans taken with cone
beam computed tomography (CBCT) of individuals between 14 and 60 years. Researchers
assessed the ratio between the dental pulp and the tooth. Additionally, a neural network
model was compared with a linear regression model. The results presented show that the
neural network model has a lower root mean square error (RMSE) of 4.40 years and mean
absolute error (MAE) of 4.12 years, compared to the linear regression model, which had an
RMSE of 10.26 years and an MAE of 8.17 years.

In contrast, the 2021 paper by Banjšak et al. [48] used deep convolutional neural
networks to estimate the age group. The learning set consisted of 4035 pantomographic
images. The developed neural network was used to estimate the age of 89 archaeological
skull remains. The accuracy of the developed network is 73%.

Deep convolutional neural networks were also presented in the works of Miloše-
vić et al. [49] and Kahaki et al. [50]. They evaluated the accuracy of dental age estimation
from X-rays. Milošević’s team created a learning set consisting of 4035 pantomographic
radiographs and 76,416 dental radiographs of individuals aged 19–90 years. The median
error was 2.95 years for panoramic images and 4.68 years for single tooth images. Kahaki’s
team, on the other hand, evaluated the effectiveness of estimating a patient’s age using
artificial intelligence using 456 pantomographic images of children between the ages of 1
and 17. They created 12 neural networks representing the age groups: 1–4, 5–7, 8–10, 11–13,
14–17, and 1–17 by male and female gender. The networks for the age group 14–17 for each
gender have the highest test quality of over 90%. For the other age groups, the test quality
was more than 80%.

One of the most recent papers on metric age assessment of children and adolescents on
pantomographic radiographs is by Zabrowicz et al. [51]. They developed a set of 21 tooth
and bone indicators and investigated whether it is possible to create a neural model to
support the assessment of metric age. In this study, three models were generated: one
for men and women, a separate one for women, and a separate one for men. The created
artificial neural network model containing cases of men and women allows us to determine
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the metric age with a quality for the test set of 0.997394 and an error for the test set of
0.036526. On the contrary, the model containing cases of women only had a quality for
the test set of 0.963090 and an error for the test set of 0.033634, while the test quality of
the model determining the metric age of men was 0.999342 and the error for the test set
was 0.039840.

Artificial neural network is an information processing system whose structure and
operating principle resemble the information processing system in a human neuron. It is
on biological inspiration that artificial neuron schemes and structure are based.

Currently, neural modeling is a method widely used by scientists and in industry.
Neural networks are a computer tool that can solve complex problems without prior
mathematical formalization.

Neural modelling is very popular method in the biological and medical commu-
nity [52]. It can be used in many diagnostic aspects [53–63]. Increasingly, deep learning
methods are being used to solve scientific problems. One simulator of deep neural networks
is the H2O program [64–66]. The H2O software can be obtained for free from the H2O.ai
website and used in accordance with the license. The project itself is Open Source. The
application can be used via a web browser, e.g., on a local computer where H2O simulator
is running. In this study, H2O simulator and Deep Learning method were used to generate
new neural networks determining the metric age of children from 4 to 15 years old. The
aim of this study is to check the possibility of creating accurate (as low as possible MAE
and RMSE error, high R2 coefficient) models, which would allow to quickly and effectively
determine the metric age of the examined patients on the basis of the provided data.

The present work is a continuation of the work of Zaborowicz et al. In the presented
research, a set of 21 original indicators was used to create deep neural network models. The
aim of this study was to verify the ability to generate a more accurate deep neural network
model compared to models produced previously.

Ethical Statements: The Bioethics Committee of the Medical University of Poznań
considered that the research carried out does not have the characteristics of a medical
experiment and therefore agreed to carry out the relevant work.

2. Materials and Methods
2.1. Research Material and Methodology

The source of the analyzed data was the database of patients (children and adolescents
aged from 48 to 144 months) of the University Centre of Dentistry and Specialist Medicine
in Poznań, Poland. The research material consisted of 619 digital pantomographic im-
ages (296 photos of girls and 323 photos of boys). All analyzed cases were verified, and
photographs which presented abnormalities or developmental disorders were excluded.
Additionally, it should be added that experiments were not performed on children. The
Bioethics Committee of the Medical University of Poznań considered that the research
carried out does not have the characteristics of a medical experiment and therefore agreed
to carry out the relevant work.

The following research methodology was used in this study:

1. Acquisition of research material-pantomographic images of children and adolescents
aged 4 to 15 (from 48 to 144 months);

2. Verification and exclusion of abnormal cases and preparation of a database of selected
digital pantomographic images;

3. Determination of patients’ age at the moment of picture taking, expressed in months;
4. Determination of a set of tooth and bone parameters;
5. Collection of tooth and bone parameters using ImageJ software;
6. Definition of a set of indicators, i.e., values of proportions of measured tooth and

bone parameters;
7. Preparation of a learning set for neural modelling;
8. Neural modelling in H2O.ai;
9. Verification of the produced models;
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10. Comparison of models with models produced in STATISTICA 7.1 simulator.

2.2. Methodology for Obtaining Empirical Data—New Tooth and Bone Indicators

In the conducted research, an original and authored set of 21 indicators was used,
i.e., distinctive tooth and bone parameters, which were developed in the form of mathe-
matical proportions X01–X21 by Zaborowicz [51] (Figure 1).
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Figure 1. Example graphical representation of indicators: X01 (color: red |C13C43|; blue |C15C45|),
X02 (color: red |C13C43|; green |C16C46|), and X03 (color: red |C13C43|; orange |C17C47|).

2.3. Research Methods

The pantomographic photos used in the research were taken with the Duerr Dental-
VistaPano S Ceph camera which was equipped with an X-ray head with 0.5 mm focus and
a digital sensor, Cls-CMOS matrix in DICOM 3.0 format supported by DBSWIN [67]. The
measurements of tooth and bone parameters were performed in Open Source software
ImageJ 1.52a [68]. Additionally, MS Excel 2007 spreadsheet was used to aggregate and
structure the data obtained in the process of image processing and analysis, which also
enables saving the data in *.csv format [69].

The process of generating a neural model was carried out using H2O.ai. software
(version 3.24.0.5) with Deep Learning methods, which allows us to create, validate, and
predict artificial neural network models. In this software, it is also possible to perform a
sensitivity analysis of variables of the developed models [64–66]. Deep learning is a class
of machine learning methods for hierarchical (deep) models with nonlinear layers [70]. The
idea of deep learning is to pretrain the network, and in the next step to train the network in
a supervised manner—this method can combine supervised and unsupervised learning. In
order to carry out the learning process properly, a large dataset is usually required; however,
this is not necessary due to the deep neural network’s performance, which has the ability
to redundancy. In brief, it can be said that the network “breaks” data into smaller parts
and, on the basis of these smallest elements, aims to generalize the processed information.
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3. Results

Three deep neural network models were generated during the study: one for the
learning set of women and men, and one each for the learning set of women and the
learning set of men. During the modeling process, all 21 new indicators and the gender
indicator were used [51]. After each model was generated, predictions were made for each
entire learning set. The learning set of women and men contained 619 samples; the learning
set of women contained 296 samples; and the learning set of men contained 323 samples.
A sensitivity analysis of the variables was also conducted for each of the models that
were generated.

The models were characterized by the following parameters: MSE (Mean Squared
Error) Equation (1); RMSE (Root Mean Squared Error) Equation (2); R2 (R Squared); MAE
(Mean Absolute Error) Equation (3); MAPE (Mean Absolute Percentage Error) Equation (4);
and RMSPE (Root Mean Squared Percentage Error) Equation (5).

MSE =
1
N

N

∑
i=1

(ti − yi)
2 (1)

RMSE =

√√√√ 1
N

N

∑
i=1

(ti − yi)
2 (2)

MAE =
1
N

N

∑
i=1
|ti − yi|, (3)

MAPE = 100
1
N

N

∑
i=1

(
1− yi

ti

)
(4)

RMSPE = 100

√√√√ 1
N

N

∑
i=1

(
ti − yi

ti

)2
(5)

3.1. Model to Determine Metric Age for Men and Women

The parameters representing the quality of the generated models for the learning set
of male and female are presented in Table 1.

Table 1. Parameters of the generated model—age assessment for men and women.

Output-Training Metrics Output-Validation Metrics Prediction

frame size 0.750 frame size 0.250 frame size Set Female and Male
MSE 14.204018 MSE 153.537238 MSE 49.318690

RMSE 3.768822 RMSE 12.391014 RMSE 7.022727
Nobs 463 Nobs 156 Nobs 619

R2 0.979917 R2 0.805455 R2 0.932248
MAE 2.790147 MAE 10.022930 MAE 4.612949

This means that the mean MAE prediction error was 4.61 months. Additionally, MAPE
and RMSPE parameters were calculated, respectively, as 4.10% and 6.36%.

The network learning process is in Figure 2. The sensitivity analysis is shown in
Table 2 and Figure 3.
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Figure 2. The generated model for women and men and the learning process.

Table 2. Parameters of the generated model—age assessment for men and women.

Variable Importance Percentage

X12 1.0 0.0563
X13 0.9163 0.0516
X14 0.8957 0.0504
Sex 0.8892 0.0500
X09 0.8797 0.0495
X16 0.8708 0.0490
X18 0.8456 0.0476
X21 0.8123 0.0457
X05 0.8122 0.0457
X08 0.8104 0.0456
X06 0.8073 0.0454
X10 0.7951 0.0447
X01 0.7924 0.0446
X17 0.7731 0.0435
X03 0.7708 0.0434
X07 0.7656 0.0431
X11 0.7647 0.0430
X15 0.7466 0.0420
X04 0.7280 0.0410
X20 0.7257 0.0408
X19 0.6891 0.0388
X02 0.6786 0.0382
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3.2. Model to Determine Metric Age for Women

The parameters representing the quality of the generated models for the learning set
of male and female are presented in Table 3.

Table 3. Parameters of the generated model—age assessment for women.

Output-Training Metrics Output-Validation Metrics Prediction

frame size 0.750 frame size 0.250 frame size Set Female
MSE 3.232030 MSE 230.694201 MSE 55.486853

RMSE 1.797785 RMSE 15.188621 RMSE 7.448950
Nobs 228 Nobs 68 Nobs 296

R2 0.995460 R2 0.698284 R2 0.923370
MAE 1.387220 MAE 12.132416 MAE 3.855711

This means that the mean MAE prediction error was 3.85 months. Additionally, MAPE
and RMSPE parameters were calculated, were, respectively: 3.48% and 6.86%.

The network learning process is in Figure 4. The sensitivity analysis is shown in
Table 4 and Figure 5.

3.3. Model to Determine Metric Age for Men

The parameters representing the quality of the generated models for the learning set
of male and female are presented in Table 5.

This means that the mean MAE prediction error was 2.34 months. Additionally, MAPE
and RMSPE parameters were calculated, were, respectively: 2.04% and 4.83%.

The network learning process is in Figure 6. The sensitivity analysis is shown in
Table 6 and Figure 7.
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Table 4. Parameters of the generated model—age assessment for women.

Variable Importance Percentage

X07 1.0 0.0559
X18 0.9659 0.0540
X10 0.9658 0.0540
X16 0.9335 0.0522
X11 0.9311 0.0521
X13 0.9306 0.0520
X14 0.9129 0.0511
X05 0.8902 0.0498
X03 0.8760 0.0490
X12 0.8579 0.0480
X17 0.8376 0.0468
X21 0.8376 0.0468
X09 0.8366 0.0468
X06 0.8237 0.0461
X15 0.8022 0.0449
X01 0.8018 0.0448
X08 0.8013 0.0448
X20 0.7462 0.0417
X04 0.7433 0.0416
X19 0.7291 0.0408
X02 0.6581 0.0368
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Table 5. Parameters of the generated model—age assessment for men.

Output-Training Metrics Output-Validation Metrics Prediction

frame size 0.750 frame size 0.250 frame size Set Male
MSE 0.287638 MSE 144.669667 MSE 31.130858

RMSE 0.536319 RMSE 12.027870 RMSE 5.579503
Nobs 254 Nobs 69 Nobs 323

R2 0.999585 R2 0.833466 R2 0.957433
Mae 0.360654 Mae 9.627116 Mae 2.340177

Table 6. Parameters of the generated model—age assessment for men.

Variable Importance Percentage

X08 1.0 0.0616
X18 0.9811 0.0605
X14 0.9335 0.0575
X12 0.9270 0.0571
X09 0.8617 0.0531
X07 0.8517 0.0525
X11 0.8311 0.0512
X13 0.8117 0.0500
X05 0.8063 0.0497
X21 0.7949 0.0490
X10 0.7859 0.0484
X16 0.7778 0.0480
X06 0.7744 0.0477
X01 0.7011 0.0432
X15 0.6937 0.0428
X17 0.6868 0.0423
X04 0.6243 0.0385
X02 0.6234 0.0384
X19 0.6197 0.0382
X03 0.5852 0.0361
X20 0.5502 0.0339
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4. Discussion

The results obtained with the generated deep neural network models indicate the
possibility of using this type of machine learning in solving such scientific problems. The
network determining the metric age of boys had the lowest prediction errors. MSE error
was 31.13, RMSE 5.58, and MAE 2.34. The MAE error means that, in this case, the metric
age estimate for boys has an error of 2.34 months. The network assessing boys’ age also
had the highest R2 coefficient. A detailed summary of the parameters is shown in Table 7.



Sensors 2022, 22, 637 11 of 17

Table 7. Parameters of the generated models—prediction of age assessment.

Prediction
Women and Men Learning Set Women Learning Set Men Learning Set

MSE 49.318690 MSE 55.486853 MSE 31.130858
RMSE 7.022727 RMSE 7.448950 RMSE 5.579503

RMPSE 6.36% RMPSE 6.86% RMPSE 4.83%
Nobs 619 Nobs 296 Nobs 323

R2 0.932248 R2 0.923370 R2 0.957433
MAE 4.612949 MAE 3.855711 Mae 2.340177

MAPE 4.10% MAPE 3.48% MAPE 2.04%

It should be noted that the first stage of the study produced RBF (Radial Basis Function)
networks and did not use all of the developed indicators. Both the first study and the
current analysis show that the neural model generated from the learning set determining
the tooth and bone parameters of men has a higher accuracy. There is greater inaccuracy in
the model determining the metric age of women (Table 8).

Table 8. Comparison of sensitivity analysis of variables from the first phase of the study and the
current study.

First Investigation Deep Learning

Type of Learning Set Women and
Men Women Men Women and

Men Women Men

Variable Rank

X01 17 10 18 12 16 14
X02 2 11 21 21 18
X03 9 9 14 14 9 20
X04 1 10 18 19 17
X05 21 13 15 8 8 9
X06 16 12 17 10 14 13
X07 18 1 5 15 1 6
X08 11 3 3 9 17 1
X09 19 4 13 5
X10 14 7 1 11 3 11
X11 5 9 16 5 7
X12 6 4 4 10 4
X13 22 8 7 1 6 8
X14 8 2 2 2 7 3
X15 3 8 17 15 15
X16 10 16 5 4 12
X17 13 12 13 11 16
X18 4 11 6 6 2 2
X19 12 5 13 20 20 19
X20 7 6 19 18 21
X21 20 7 12 10
SEX 15 - - 3 - -

All prepared, original indicators were used to generate the models. None of the
indicators had less than 0.5 significance. It should be noted that variable X02, X04, and X15
had a large variation compared to other indicators (Table 9). In the future, it is recommended
to omit these variables from the network learning process. A summary and characterization
of the indicators can be found in Table 10.
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Table 9. Parameters of the generated models—prediction of age assessment.

Indicator Type Min Max Mean Sigma

Sex Int 0.0 1.0 0.4782 0.4999
Months Int 52.0 214.0 118.0549 27.0020

X01 Real 0.0230 5.8003 1.1747 0.6631
X02 Real 0.2353 464.5325 10.4758 30.0014
X03 Real 0.0225 4.4507 1.1795 0.5758
X04 Real 0.5192 323.6753 8.2728 20.4937
X05 Real 0.1269 3.9027 1.0722 0.4077
X06 Real 0.0045 1.6925 0.3198 0.2692
X07 Real 1.1691 2.1069 1.3735 0.1631
X08 Real 0.6556 2.6715 1.5773 0.2764
X09 Real 1.1888 2.4927 1.3968 0.1019
X10 Real 1.2049 3.0659 1.9506 0.3763
X11 Real 0.1827 9.3791 4.8461 1.1687
X12 Real 0.1477 6.9919 3.5269 1.1264
X13 Real 0.5363 2.9021 2.2437 0.2184
X14 Real 0.1807 2.7977 1.9363 0.3729
X15 Real 0.2144 43.1420 6.0704 4.6076
X16 Real 0.2337 8.8893 3.1104 0.7433
X17 Real 0.3277 9.7627 4.1757 1.0240
X18 Real 0.0 7.4619 2.9821 0.7819
X19 Real 0.0624 3.4559 0.8438 0.5139
X20 Real 0.0680 4.0761 0.9981 0.6391
X21 Real 0.3125 3.6140 1.1874 0.3937

The Shadow: The most diverse variables.

Table 10. Summary of the significance of variables for each learning set and generated model.

Name of the Learning Set Women and Men Women Men
Variable Importance Importance Importance

Sex 0.8892 - -
X01 0.7924 0.8018 0.7011
X02 0.6786 0.6581 0.6234
X03 0.7708 0.8760 0.5852
X04 0.7280 0.7433 0.6243
X05 0.8122 0.8902 0.8063
X06 0.8073 0.8237 0.7744
X07 0.7656 1.0000 0.8517
X08 0.8104 0.8013 1.0000
X09 0.8797 0.8366 0.8617
X10 0.7951 0.9658 0.7859
X11 0.7647 0.9311 0.8311
X12 1.0000 0.8579 0.9270
X13 0.9163 0.9306 0.8117
X14 0.8957 0.9129 0.9335
X15 0.7466 0.8022 0.6937
X16 0.8708 0.9335 0.7778
X17 0.7731 0.8376 0.6868
X18 0.8456 0.9659 0.9811
X19 0.6891 0.7291 0.6197
X20 0.7257 0.7462 0.5502
X21 0.8123 0.8376 0.7949

The models presented in the study are characterized by high accuracy. Compared
with the work of Kim and co-authors [46], the quality of the model determining the age
of men and women was 9 percentage points higher. The R2 coefficient of the produced
model was 0.93; Kim’s model had a quality level of accuracy of 0.84. On the other hand,
the difference between the accuracy of the model produced by Farhadian et al. [47] is much
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higher. The MAE error presented in this team’s study was 4.12 years, while the RMSE
error was 4.4 years. The error of the models produced in this work varies depending
on the learning set within: MAE from 2.34 to 4.61 months, and RMSE error from 5.58 to
7.45 months. However, it is important to note the difference in the age range of the study
subjects, which may have translated into network quality. In Farhadian’s study, the range
was between 14 and 60 years of age, whereas in the research presented here, the range
was between 4 and 15 years. In turn, Banjšak et al. [48] used convolutional networks to
estimate the age of found skulls. This team’s model works with an accuracy of 73%. It
should be noted that this team could not know the precise metrical age. Very high accuracy
of the produced models was presented in their works by Milošević et al. [49] and Kahaki
et al. [50]. However, despite the high values of the indicators defining the networks, the
error was measured in years rather than individual months.

Compared to the work of our team [51], it can be seen that the quality of deep neural
models is comparable, with an indication for deep learning methods. Table 11 shows the
network quality and RMPSE error for each learning set.

Table 11. Comparison of the quality of the models from the first phase of the study and the cur-
rent ones.

Name of the
Learning Set Women and Men Women Men

First
Study

Current
Research

First
Study

Current
Research

First
Study

Current
Research

R2 0.9974 0.9322 0.9631 0.9234 0.9993 0.9574
RMPSE 3.65% 6.36% 3.36% 6.86% 3.98 4.84%

The neural model developed in this study is applicable to assess the metric age of
only children and adolescents in the age range of 4–15 years. Pantomographic radiographs
of patients without systemic diseases and with normal development of the dental buds
were used for the study. All images of persons with root canal treatment or extensive
fillings in their teeth were also excluded. This is a strong advantage from the point of view
of network creation and function. However, from the point of view of diagnostics, the
collection should take into account a whole range of cases including anomalies. In addition,
the number of teaching cases should increase. The strengths of the paper are the fairly large
scope of the dataset and the well-defined cases. The plus side of the research conducted
is the use of proprietary indicators that allowed for the development of a new method
and the use of neuronal modeling methods. Additionally, note that the artificial neural
network simulator used is publicly available under an open license. On the other hand,
the disadvantage of works comparing the effect of different technologies is the divergence
of quality indicators—different simulators have different measures, and special attention
should be given to this.

5. Conclusions

The conducted research indicates that neural modeling methods are an appropriate
tool for determining the metric age based on the developed proprietary tooth and bone
indices. The indicated issue of metric age assessment belongs to the area of medical,
biological, and natural sciences and is a highly nonlinear problem. The MAE error of the
produced models, depending on the learning set used, is between 2.34 and 4.61 months,
while the RMSE error is between 5.58 and 7.49 months. The correlation coefficient R2 ranges
from 0.92 to 0.96. The produced deep neural models have higher quality already in the
first iteration of learning the network using all the developed metrics. It is recommended
to prepare deep neural networks based on the set of indicators used in the first stage of
the research.
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Abbreviations
A43 apex of the root of the tooth 43
A45 apex of the root of the tooth 45
A46 apex of the distal root of the tooth 46
A47 apex of the distal root of the tooth 47
C13 top of the crown of the tooth 13
C15 top of the cheek nodule of the tooth 15
C16 top of the distal cheek nodule of the tooth 16
C17 top of the distal cheek nodule of the tooth 17
C43 top of the crown of the tooth 43
C45 top of the cheek nodule of the tooth 45
C46 top of the distal cheek nodule of the tooth 46
C47 top of the distal cheek nodule of the tooth 47
CeD43 distal cervical point of the tooth 43
CeD45 distal cervical point of the tooth 45
CeD46 distal cervical point of the tooth 46
CeD47 distal cervical point of the tooth 47
CeM43 mesial cervical point of the tooth 43
CeM45 mesial cervical point of the tooth 45
CeM46 mesial cervical point of the tooth 46
CeM47 mesial cervical point of the tooth 47
CM16 top of the mesial cheek nodule of the tooth 16
CM17 top of the mesial cheek nodule of the tooth 17
CM46 top of the mesial cheek nodule of the tooth 46
CM47 top of the mesial cheek nodule of the tooth 47

M43
a point on the lower edge of the mandible in the projection of a straight line through
points C43 and A43

M45
a point on the lower edge of the mandible in the projection of a straight line through
points C45 and A45

M46
point on the lower edge of the mandible in the projection of a straight line through
points C46 and A46

M47
a point on the lower edge of the mandible in the projection of a straight line through
points C47 and A47

P43 upper point of the pulp chamber of the tooth 43
P45 upper point of the pulp chamber of the tooth 45
P46 top of distal corner of the pulp chamber of the tooth 46
P47 top of distal corner of the pulp chamber of the tooth 47
PCeD43 distal point of the pulp chamber of the tooth 43 in the cervical area
PCeD45 distal point of the pulp chamber of the tooth 45 in the cervical area
PCeD46 distal point of the pulp chamber of the tooth 46 in the cervical area
PCeD47 distal point of the pulp chamber of the tooth 47 in the cervical area
PCeM43 mesial point of the pulp chamber of the tooth 43 in the cervical area
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PCeM45 mesial point of the pulp chamber of the tooth 45 in the cervical area
PCeM46 mesial point of the pulp chamber of the tooth 46 in the cervical area
PCeM47 mesial point of the pulp chamber of the tooth 47 in the cervical area
X01 ratio between section |C13C43| and section |C15C45|
X02 ratio between section |C13C43| and section |C16C46|
X03 ratio between section |C13C43| and section |C17C47|
X04 ratio between section |C15C45| and section |C16C46|
X05 ratio between section |C15C45| and section |C17C47|
X06 ratio between section |C16C46| and section |C17C47|
X07 ratio between section |C43A43| and section |P43A43|
X08 ratio between section |C45A45| and section |P45A45|
X09 ratio between section |C46A46| and section |P46A46|
X10 ratio between section |C47A47| and section |P47A47|
X11 ratio between section |CeM43CeD43| and section |PCeM43PCeD43|
X12 ratio between section |CeM45CeD45| and section |PCeM45PCeD45|
X13 ratio between section |CeM46CeD46| and section |PCeM46PCeD46|
X14 ratio between section |CeM47CeD47| and section |PCeM47PCeD47|
X15 ratio between section |C43M43| and section |A43M43|
X16 ratio between section |C45M45| and section |A45M45|
X17 ratio between section |C46M46| and section |A46M46|
X18 ratio between section |C47M47| and section |A47M47|
X19 ratio between section |A43M43| and section |A45M45|
X20 ratio between section |A43M43| and section |A46M46|
X21 ratio between section |A45M45| and section |A46M46|
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Warszawa, Poland, 1969.
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Świderski, P. Application of X-rays to dental age estimation in medico-legal practice. Arch. Forensic Med. Criminol. 2015, 65, 1–16.
[CrossRef] [PubMed]

10. Schmeling, A.; Reisinger, W.; Geserick, G.; Olze, A. Age estimation of unaccompanied minors. Part I. General considerations.
Forensic Sci. Int. 2006, 15 (Suppl. 1), 61–64. [CrossRef]

11. Ubelaker, D.H.; Parra, R.C. Application of three dental methods of adult age estimation from intact single rooted teeth to a
Peruvian sample. J. Forensic Sci. 2008, 53, 608–611. [CrossRef]

12. Rozylo-Kalinowska, I.; Kolasa-Raczka, A.; Kalinowski, P. Relationship between dental age according to Demirjian and cervical
vertebrae maturity in Polish children. Eur. J. Orthod. 2011, 33, 75–83. [CrossRef] [PubMed]

13. Moorrees, C.F.; Fanning, E.A.; Hunt, E.E., Jr. Age variation of formation stages for ten permanent teeth. J. Dent. Res. 1963, 42,
1490–1502. [CrossRef]

14. Cameriere, R.; Pacifici, A.; Pacifici, L.; Polimeni, A.; Federici, F.; Cingolani, M.; Ferrante, L. Age estimation in children by
measurement of open apices in teeth with Bayesian calibration approach. Forensic Sci. Int. 2016, 258, 50–54. [CrossRef] [PubMed]
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28. Amato, F.; López, A.; Peña-Méndez, E.M.; Vaňhara, P.; Hampl, A.; Havel, J. Artificial neural networks in medical diagnosis. J.

Appl. Biomed. 2013, 11, 47–58. [CrossRef]
29. Hamet, P.; Tremblay, J. Artificial Intelligence in Medicine. Metabolism 2017, 69, 36–40. [CrossRef]
30. Baxt, W.G. Application of artificial neural networks to clinical medicine. Lancet 1995, 346, 1135–1138. [CrossRef]
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48. Banjšak, L.; Milošević, D.; Subašić, M. Implementation of artificial intelligence in chronological age estimation from orthopanto-

mographic X-ray images of archaeological skull remains. Bull. Int. Assoc. Paleodont. 2021, 14, 2.
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