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Abstract: Systems with short-range attractive and long-range repulsive interactions can form periodic
modulated phases at low temperatures, such as cluster-crystal, hexagonal, lamellar and bicontinuous
gyroid phases. These periodic microphases should be stable regardless of the physical origin of
the interactions. However, they have not yet been experimentally observed in colloidal systems,
where, in principle, the interactions can be tuned by modifying the colloidal solution. Our goal is
to investigate whether the formation of some of these periodic microphases can be promoted by
confinement in narrow slit pores. By performing simulations of a simple model with competing
interactions, we find that both the cluster-crystal and lamellar phases can be stable up to higher
temperatures than in the bulk system, whereas the hexagonal phase is destabilised at temperatures
somewhat lower than in bulk. Besides, we observed that the internal ordering of the lamellar phase
can be modified by changing the pore width. Interestingly, for sufficiently wide pores to host three
lamellae, there is a range of temperatures for which the two lamellae close to the walls are internally
ordered, whereas the one at the centre of the pore remains internally disordered. We also find that
particle diffusion under confinement exhibits a complex dependence with the pore width and with
the density, obtaining larger and smaller values of the diffusion coefficient than in the corresponding
bulk system.

Keywords: colloids with competing interactions; periodic microphases; confinement

1. Introduction

Competing attractive and repulsive interactions can be found in a wide variety of
systems, ranging from block copolymers, proteins, or colloids, just to mention a few
examples [1]. Even though the physical origin of the interactions are different in these
systems, theory predicts that they all exhibit similar phase diagrams in which periodic
microphases (cluster-crystal, hexagonal, bicontinuous gyroid and lamellar phases) are
stable at low temperatures [2–6]. One might think that colloidal systems, in which the
attractive and repulsive interactions can be tuned by modifying the colloidal solution,
could be a good playground to experimentally study the formation of periodic microphases.
Still, these periodic microphases have not yet been experimentally observed in colloidal
systems [7], which has been attributed to the particle size polidispersity [8], to the slow
kinetics of the fluid [9–11], or to the inability of a simple effective potential to capture
the behaviour of the colloidal solution [7]. Additionally, recent studies have suggested
that apart from the strength of the interactions, the attractive and repulsive ranges play
an important role and their variation can induce different phase behaviours [1,12]. In
this regard, the ranges of interaction can be easily tuned in block copolymers by varying
the length of the chains composed of one or another monomer [13]. Block copolymers
self-assembly has many potential applications in nanotechnology and industry, such as
separation and ion conduction in batteries, templating for nanomaterial synthesis and
sensing [14,15].
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Obtaining the proper ranges in experimental colloidal systems has been challeng-
ing, but some recent approaches in which the colloidal particles are functionalised with
hydrophobic molecules have shown promising results [16]. In a previous work [17], we
showed how the Lennard-Jones plus Yukawa (LJY) potential, with the proper ranges and
strengths of the interactions, can form ordered microphases in bulk. Here we want to stress
the importance of simulations in predicting new physical phenomena. In particular, simu-
lation is useful to guide the design of experiments that can lead finally to new discoveries.
Regarding the applications, confined colloidal particles in channels of different geometries
have been used to build wave-guide devices useful in sensing [18].

There are several ways in which the ordering of the periodic microphases can be
induced, for example, by applying shear [19] or by confining the fluid in pores with
the appropriate geometry [20]. In this work, we will explore this second route. It is
known that confinement of simple and complex fluids can change the phase behaviour
by shifting coexistence lines to lower or to higher temperatures than in bulk, depending
on the shape and size of the pores and on the nature of the interactions of the fluid with
the pore walls [21]. It can also induce significant changes on the dynamic behaviour, in
some cases finding a nonmonotonous variation of the diffusion coefficient with the pore
size [22–24]. In the particular case of systems with competing interactions, previous theory
and simulation studies showed that confinement can promote or inhibit the formation of
periodic microphases depending on whether the pore size is commensurate or not with
the periodicity of the bulk microphase. For example, we showed in a previous work that
confinement in channels with triangular and hexagonal cross-sections favour the formation
of the hexagonal phase, as well as by introducing wedges in pores with cylindrical cross-
sections (which otherwise promote the formation of helical structures) [25,26]. We also
found that new phases that are not stable in bulk can be stabilised when confined by
the appropriate pore geometry. In this way, cluster-crystals with different symmetries
were obtained by confinement in bicontinuous porous materials [27]. Surprisingly, the
study of confinement in simple geometries, such as a slit pore, has not been sufficiently
explored. Indeed we are only aware of a few studies in which fluids with competing
interactions confined between parallel plates were studied, but those were restricted to
two- and one-dimensional cases [20,28,29]. The literature on the dynamic behaviour of
fluids with competing interactions in confinement is also scarce [30].

In this work we undertake a simulation study to investigate the effects of confinement
on the structural and dynamic behaviour of fluids with competing interactions in narrow
slit pores as a function of the pore width. The study is performed under conditions at
which the cluster-crystal, the hexagonal and the lamellar phases are stable in bulk.

Our goal is to determine whether the formation of periodic microphases can be
thermodynamically and/or kinetically favoured by confinement.

2. The Model and the Simulation Method

The colloidal particles interact with each other via an effective short-range attraction
long-range repulsion (SALR) model potential resulting from the addition of a Lennard-
Jones potential plus a Yukawa repulsive term:

uSALR(rij) = 4ε

( σ

rij

)2α

−
(

σ

rij

)α
+

A
(rij/ζ)

exp
(
−rij/ζ

)
(1)

The parameters of the model were assigned the same values as in our previous work
in which the bulk phase diagram was investigated [17]. In particular, we chose ε = 1.6,
σ = 1.0, α = 6, A = 0.65, and ζ = 2.0. For computational efficiency, the potential is
truncated and shifted at rc = 4.0σ. In what follows, all the magnitudes are reduced taking
σ and ε as units of length and energy, respectively.

The confinement is implemented along the z direction by placing two parallel walls
at zw = ±W/2, so that the separation between them is W. Periodic boundary conditions
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are imposed along the x and y directions. The walls are structureless and repulsive.
Particles interact with the walls via a Lennard-Jones model truncated and shifted at the
energy minimum:

Vzw(ziw) =

4εw

[(
σw
ziw

)12
−
(

σw
ziw

)6
]
+ εw : ziw < 21/6σw

0 : ziw ≥ 21/6σw

, (2)

where εw = 1.0, σw = 1.0, and ziw is the distance from particle i to the pore wall zw. The
Lennard-Jones plus Yukawa interaction potential used to model the interactions between
the particles and the truncated Lennard-Jones potential that accounts for the interactions
between the particles and the walls are plotted in Figure 1.
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Figure 1. The Lennard-Jones plus Yukawa potential used to model the interactions between colloidal
particles and the Lennard-Jones potential truncated and shifted at the energy minimum used to
model the interactions between the slit walls and the particles

Thus, the total energy of the system is given by:

Utot =
N−1

∑
i=1

N

∑
j>i

uSALR(rij) +
N

∑
i=1

(VW/2(ziw) + V−W/2(ziw)). (3)

The slit width is given by the centre–centre separation between the confining walls, W.
Taking into account that the energy of a particle becomes very repulsive for distances to
the wall shorter than σw, the available width for the particle volume is actually 2σw smaller
than the pore width. The edges of the simulation box were set to Lx = Ly = 40σ, and
Lz = W, with W∗ = W/σ = 5.0, 7.0, 9.0 and 11.0. Thus, the number density is calculated
as ρ∗ = (Nσ3)/(LxLyW). Given the large dimensions of the simulation box along the x
and y directions, we expect that finite-size effects will be small.

The phase behaviour of the confined SALR fluid was explored by performing a series
of Monte Carlo (MC) simulations in the grand canonical ensemble at T∗ = kBT/ε = 0.30
for several values of the chemical potential within −1.2 ≤ µ∗ = µ/ε ≤ 0.5. For each
wall separation, we chose three states at which the cluster-crystal, the hexagonal and the
lamellar phases exhibit the most ordered structure (as compared to those obtained at other
chemical potentials). The numbers of particles confined in the slit pore at each considered
state are given in Table 1.
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Table 1. Average number of particles confined in the slit pores at which the fluid organises into
ordered structures at T∗ = 0.3 at densities at which the bulk fluid assembles into a cluster-crystal, a
cylindrical and a lamellar phase. Note that the chemical potential for the more dense lamellar phase
might not be reliable due to the low acceptance probability of the insertion/deletion MC moves. In
any case, we only used these simulations to generate the initial configurations for the NVT MD runs.

Phase W∗ = 5.0 W∗ = 7.0 W∗ = 9.0 W∗ = 11.0

Cluster-Crystal N = 1030
µ∗ = −1.20

N = 1748
µ∗ = −1.00

N = 2403
µ∗ = −1.00

N = 2807
µ∗ = −1.00

Cylindrical N = 1868
µ∗ = −0.60

N = 2923
µ∗ = −0.40

N = 3845
µ∗ = −0.40

N = 4065
µ∗ = −0.60

Lamellar N = 3432
µ∗ = 0.50

N = 5399
µ∗ = 0.20

N = 6124
µ∗ = 0.50

N = 8058
µ∗ = 0.40

∗ denotes reduced variables.

Starting from these configurations, the confined fluid was then heated and cooled
using Molecular Dynamics (MD) simulations in the canonical ensemble (NVT). The MD
simulations were performed with the LAMMPS simulation package [31], in which the
truncated and shifted SALR model described above was implemented in an external
subroutine coded by us. The time step was set to dt = 0.005

√
mσ2/ε. Temperature was

controlled with the Nose-Hoover thermostat with a relaxation time of 100dt. Simulations
were evolved for 106 MD steps for equilibration, followed by another 106 MD steps for
taking averages.

The structure of the fluid was identified mainly by visual inspection of local density
plots. These plots were built by dividing the simulation box in small cubic cells of approx-
imate edge length σ, measuring the particle density in each of these cells and averaging
over 10,000 independent configurations, so that we can evaluate the local density function:

ρxyz(x, y, z) =
〈N(x, y, z)〉

∆V
, (4)

where 〈N(x, y, z)〉 is the average number of particles in a cubic cell of edge σ and centred
at the point (x, y, z), and ∆V is the volume of each small cubic cell, in our case ∆V = σ3.
Isosurfaces of these density maps were visualised using OpenDX software. Clusters were
also identified by performing a cluster size analysis [32], adopting the convention that two
particles are nearest neighbours if the distance between them is lower than rcut = 1.6σ
for the cluster-crystal and hexagonal phases and lower than rcut = 1.4σ for the lamellar
phase, i.e., roughly the distance to the first minimum in the radial distribution function
of each periodic microphase [17]. This information was used to calculate the cluster size
distribution (CSD).

The spatial distribution of the particles along the direction perpendicular to the pore
walls was investigated by measuring the density profiles, calculated by dividing the pore
volume in small slabs of width ∆z = 0.1σ and averaging the number density in each of
these slabs:

ρz(z) =
〈N(z + ∆z)〉

LxLy∆z
. (5)

Here 〈N(z + ∆z)〉 is the ensemble average of the number of particles in the slab between
z− ∆z/2 and z + ∆z/2, and Lx and Ly are the two periodic edges of the simulation box.

Following our preliminary study of the bulk system [17], we also investigated the
internal ordering of the clusters at the particle scale as a function of temperature. For
that purpose, for each periodic microphase, we chose an order parameter that is able to
discriminate particles within local ordered environments from those within local disor-
dered environments. As in the bulk system, the spherical and cylindrical clusters that
form the cluster-crystal and hexagonal phases at low temperatures have local icosahedral
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symmetries. In this case, a common neighbour analysis (CNA) [33] allows us to distinguish
particles with local icosahedral environments from liquid environments. The CNA analysis
was made with the OVITO visualisation tool [34], using a fixed cutoff radius of 1.6σ, that
corresponds to the distance to the first minimum in the pair distribution function in the bulk
cluster-crystal and hexagonal phases [17]. On the contrary, in the lamellar phase, particles
are arranged in stacks of hexagonally-packed layers. Therefore, it is more convenient to use
the Lechner and Dellago order parameter, that is able to effectively distinguish particles in
ordered local environments (i.e., solid-like, including particles in the frozen lamellae [17])
from those in disordered local environments. For the lamellar phase, first neighbours were
defined using a slightly shorter cutoff distance than for the cluster-crystal and hexagonal
phases of 1.4σ, corresponding to the first minimum in the pair distribution function of the
bulk lamellar phase [17].

Finally, we also measured the mean squared displacement (MSD) that provides infor-
mation on the single particle dynamics:

〈
∆r(t)2

〉
=

〈
1
N

N

∑
i=1

(ri(t)− ri(0))
2

〉
, (6)

where ri(t) and ri(0) are the positions of particle i at times t and zero, respectively. The
diffusion coefficient, D, is estimated from Einstein’s relation:

D =
1

2d
lim
t→∞

∂
〈
∆r(t)2〉

∂t
(7)

where d is the dimensionality of the system. For the confined systems, we calculated
the diffusion coefficient in the direction parallel to the walls (D‖), because the particle
displacement in the perpendicular direction is limited by the narrow width of the pores.
In this case, the MSD is calculated using only the x and y coordinates, and d is set to
2. For the bulk system, movements in the three directions of space are considered and
d = 3. To calculate the diffusion coefficient, we divide the MSD data into 10 independent
blocks. Then, we fit the MSD to a straight line and calculate the diffusion coefficient in
each block following Equation (7). We discard the first steps in which the systems usually
exhibit ballistic behaviour. We only calculate the diffusion coefficient when the MSD scales
linearly with t, i.e., in the diffusive regime. The diffusion coefficients are averaged over the
independent blocks and the errors are estimated as the standard deviation of the sample
of blocks.

3. Results

3.1. Equilibrium Properties

The qualitative phase diagram of the bulk system was published in previous work [17]
and is sketched in Figure 2. The three isochores studied for each pore width W are marked
with symbols in this diagram. These isochores correspond to values at which the cluster-
crystal, the hexagonal and the lamellar phases are stable at low temperatures in bulk.
The structures of the confined fluid in the slit pores at T∗ = 0.3 obtained from the MD
simulations are shown in Figure 3. The stability of these structures with temperature
was studied by performing simulations in the NVT ensemble at T∗ = 0.20–0.50, and the
results are summarised in Figure 2, where the colors of the symbols represent the various
structures formed. The results obtained in each density region are described in detail in
what follows.



Int. J. Mol. Sci. 2021, 22, 11050 6 of 17

0 0.1 0.2 0.3 0.4 0.5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
*

ρ*

Cluster-fluid

Cluster-crystal

Cylindrical

Coexistence

Percolating-fluid

Lamellar

W* = 5.0

W* = 7.0

W* = 9.0

W* = 11.0

Defective
cluster-crystal

Figure 2. Sketch of the bulk phase diagram, using data from Ref. [17]. The state points studied for
each pore size W∗ = 5, 7, 9 and 11 are marked with different symbols, and their colours indicate the
structure adopted by the confined fluid in each thermodynamic state, as provided in the legend.

W* = 5 W* = 7 W* = 9 W* = 11
ρ* = 0.1287

ρ* = 0.2335

ρ* = 0.4290

ρ* = 0.1561

ρ* = 0.2610

ρ* = 0.4820

ρ* = 0.1668

ρ* = 0.2670

ρ* = 0.4252

ρ* = 0.1594

ρ* = 0.2309

ρ* = 0.4578

Figure 3. Local density isosurfaces ρ∗iso = 0.30 for all the ordered microphases obtained at different
slit widths, W∗. Note that the density chosen for the isosurfaces is somewhat lower than that in
our previous work on SALR systems modelled with the square-well linear model (in which we
chose ρ∗iso = 0.40) [25–27]. The reason for this new choice is that the clusters obtained with the
Lennard-Jones plus Yukawa model used in this work are appreciably smaller [17]. Two views are
presented for cluster-crystal and hexagonal phases and one for the lamellar phase. The number
densities in reduced units, ρ∗, are specified and the temperature is T∗ = 0.30.

3.1.1. Low Density: The Cluster-Crystal

Let us start discussing the structures obtained by the MD simulations at T∗ = 0.3 and
low densities, ρ∗ ≈ 0.12− 0.16 (Figure 3). Under these conditions the fluid is still able to
organise into an ordered cluster-crystal under confinement, except for the pore size W∗ = 9.
In particular, the fluid forms one layer of hexagonally-packed clusters for W∗ = 5 and
W∗ = 7, the difference being that clusters are roughly spherical in the narrowest pore and
adopt a spherocylindrical shape in the W∗ = 7 pore. At W∗ = 11, the pore is wide enough
to host a stack of two hexagonally-packed layers of nearly spherical clusters. Finally, at
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W∗ = 9, the system assembles into a structure composed of two layers formed by a mixture
of spherical and spherocylindrical clusters, in which some local hexagonal ordering can be
observed, but that is globally disordered.

The diameter of the clusters (d∗0 = d0/σ) measured from the local density isosurfaces
projected on the plane perpendicular to the pore walls, as well as the distance (l∗0 = l0/σ)
between nearest neighbour clusters are given in Table 2. For the three pore widths for
which ordered cluster structures are observed, l∗0 and d∗0 adopt values relatively close to
those of the bulk system, with a maximum deviation of about 5%–6%. Larger differences
can be seen in the CSD (Figure 4, left panel). At T∗ = 0.30, the bulk CSD is bimodal,
exhibiting two peaks of similar probability at n = 19 and n = 23 [17]. For W∗ = 5 the CSD
is slightly narrower than in the bulk system and peaks at slightly smaller sizes, whereas
for the remaining pore widths, the CSD is shifted to larger sizes. This effect is especially
pronounced for W∗ = 7, in which the maximum is located at n = 31, consistently with the
formation of elongated clusters (Figure 3).

Table 2. Estimation of the distance between clusters (l∗0 = l0/σ) and the average cluster size
(d∗0 = d0/σ) in bulk and in the confined systems. The cluster size d∗0 corresponds to the average cluster
diameter in spherical and cylindrical clusters, and to the width of the lamellae in the lamellar phase.

W∗ 5.0 7.0 9.0 11.0 Bulk

Cluster-crystal
l∗0 = 5.9
d∗0 = 3.3
ρ∗ = 0.1287

l∗0 = 5.8
d∗0 = 3.1
ρ∗ = 0.1561

−−
−−
ρ∗ = 0.1668

l∗0 = 6.0
d∗0 = 3.3
ρ∗ = 0.1594

l∗0 = 5.6
d∗0 = 3.3
ρ∗ = 0.155

Hexagonal
l∗0 = 5.3
d∗0 = 3.0
ρ∗ = 0.2335

l∗0 = 5.5
d∗0 = 3.0
ρ∗ = 0.2610

l∗0 = 5.8
d∗0 = 3.2
ρ∗ = 0.2670

l∗0 = 6.2
d∗0 = 3.0
ρ∗ = 0.2309

l∗0 = 5.6
d∗0 = 2.8
ρ∗ = 0.252

Lamellar
−−
d∗0 = 2.9
ρ∗ = 0.4290

l∗0 = 3.7
d∗0 = 1.5
ρ∗ = 0.4820

l∗0 = 4.7
d∗0 = 2.2
ρ∗ = 0.4252

l∗0 = 3.9
d∗0 = 1.7
ρ∗ = 0.4578

l∗0 = 4.6
d∗0 = 2.2
ρ∗ = 0.407

P
(n

)

T* = 0.30

n

T* = 0.40

n
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0

0.05

0.1

0.15

0.2

10 20 30 40 50
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W*=9,
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W*=5,
*

*

*

*

Figure 4. Cluster-size distributions of the cluster-crystal in bulk and in the slit pores of width W∗ at
T∗ = 0.3 and T∗ = 0.4.

The reason why the cluster-crystal becomes incommensurate for the W∗ = 9 slit pore
can be rationalised from the values of d∗0 and l∗0 . This pore is too wide for the fluid to
organize into a single layer of spherocylinders with their axial directions aligned perpen-
dicularly to the pore walls. In spherocylindrical clusters that are 7σ high, i.e., of height
comparable to the accessible pore width in which the particles can move, many particles
experience repulsive interactions, making this configuration energetically unfavourable. A
possible alternative would be to form two layers of hexagonally-packed spherical clusters.
Taking the values of d∗0 and l∗0 from the bulk system, these two layers can be nicely ac-
commodated in a slit pore of width W∗ ≈ 2 + d∗0 +

√
2/3l∗0 = 9.9, where d∗0 is the average

cluster diameter,
√

2/3l∗0 is the z-distance between two hexagonally-packed layers in which
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the distance between the nearest clusters is l∗0 , and the factor 2 takes into account that
the centre of the particles can not get closer than σ to the pore walls. Thus, in order to
accommodate these two layers in the W∗ = 9 pore, either the distance between the two
layers and/or the shape of the clusters would have to be modified from those in the bulk
phase. Our simulations indicate that in these conditions the system is not able to find
an ordered cluster phase, forming instead a structure in which spherical and elongated
clusters coexist and exhibiting only local order in some regions. Finally, in the pore size
W∗ = 11, two layers of the bulk cluster-crystal can be fitted leaving some extra room in the
pore. In this case, the cluster-crystal is somewhat expanded in order to occupy the whole
accessible volume within the pore, as evidenced by the larger values of d∗0 (as well as in the
shift of the CSD to larger sizes, Figure 4) and of l∗0 as compared to in bulk.

Focusing now on the stability of the assembled structures with temperature, our
simulations indicate that the confined cluster-crystal phase remains stable up to higher
temperatures than in bulk, except for the pore width W∗ = 9, which, as we have just seen, is
incommensurate with the bulk cluster-crystal (Figure 2). In particular, the cluster-crystal is
able to survive up to T∗ = 0.30 when confined in pores of sizes W∗ = 5, 7 and 11, whereas
in bulk it melts at T∗ = 0.20− 0.25 depending on the density. Shifts in the coexistence lines
between two phases are common under confinement and have been observed either in
complex [26,27,35] and simple [36] fluids. On the contrary, for the pore size W∗ = 9, the
structure remains only partially ordered down to T∗ = 0.20.

As can be seen in Figure 5 (first row), the particle density profiles measured along
the direction perpendicular to the pore walls, exhibit pronounced maxima and minima,
indicating the ordering of the particles in layers for all the investigated pore widths and
at all temperatures, becoming particularly sharp at low temperatures. At T∗ = 0.20, the
density profiles in the W∗ = 5 and W∗ = 7 pores are larger than zero anywhere within
the pore, except for distances shorter than the particle repulsive core radius, which reflects
that a single layer of clusters has been formed. However, the number of maxima in the
density profiles differs in the two pores: four for W∗ = 5 and six for W∗ = 7. In both cases,
two of these maxima form at the walls and are less pronounced than those in the pore
central region. The distance between two adjacent maxima is of the order of the particle
diameter, being somewhat shorter at the pore central region (about 0.7σ for W∗ = 5 and
0.9σ for W∗ = 7) than at the pore walls (about 1.0σ in both cases). For the two widest pores,
W∗ = 9 and W∗ = 11, the formation of two clearly different layers of clusters is reflected
in the pronounced decrease of the local density at the pore central region. Curiously, this
decrease is more pronounced for W∗ = 9 than for W∗ = 11 at all temperatures, despite
the fact that the confined fluid is more ordered at W∗ = 11. Especially remarkable, is that
at T∗ = 0.5, the two layers are significantly smoothed for W∗ = 11 but are still visible
for W∗ = 9. As temperature is lowered, smaller peaks develop within each of these two
layers, and their interdistance is again of the order of the particle diameter (about 0.95σ for
W∗ = 9 and 0.90σ for W∗ = 11).

The presence of very sharp maxima and minima in the density profiles at low tem-
peratures indicates internal ordering of the clusters, a phenomenon already observed in
the bulk system [17]. This motivated us to monitor the internal ordering of the clusters as
a function of temperature by measuring the fraction of particles within local icosahedral
environments as identified with the CNA analysis. As can be seen in Figure 6 (top panel),
at these low densities the internal ordering exhibits a similar temperature behaviour as in
the bulk system. Clusters are internally ordered at low temperatures (as only the inner
particles have icosahedral local environments, a fraction of particles in icosahedral environ-
ments of around 0.1 indicates that almost nearly all the clusters are internally ordered [17]),
and gradually become disordered as the temperature increases. Visual inspection of the
configurations (see Figure 6) reveals that, at the lowest temperature, the clusters exhibit
well defined geometries, often consisting in interpenetrated icosahedra sharing a five-fold
axis (two, three or even four icosahedra can be merged to form clusters with n = 19, n = 25
and n = 31 particles, which appear with relatively large probabilities, as shown in Figure 4
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(left)) or formed by adding particles at the surface of an icosahedral cluster (e.g., the cluster
with n = 24 shown in Figure 6).
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3.1.2. Intermediate Density: The Hexagonal Phase

At intermediate densities (ρ∗ ≈ 0.23− 0.27) and T∗ = 0.3, the confined fluid organises
into cylindrical clusters for the four pore sizes, as in the bulk system (two different views
for each pore are shown in Figure 3), but there are clear structural differences depending
on the pore width. For W∗ = 5, one layer of cylindrical aggregates with roughly circular
cross-sections is formed. This is hardly surprising because the bulk cylinder diameter
(d0 = 2.75σ) is comparable to the accessible pore width (which is approximately equal to
W∗− 2σ). The diameter of the confined cylinders becomes somewhat larger than in the bulk
system, probably to occupy as much as possible of the available pore space (see Table 2).
For a wider pore (W∗ = 7), the fluid organises into two layers of cylindrical clusters. The
cylinders in this structure are deformed with respect to those in the bulk phase, adopting
ellipsoidal (instead of circular) cross-sections. This suggests certain incommensurability of
the pore size with the bulk cylindrical phase that can be overcome with a small deformation
of the cylinders. As a rough estimation, two layers of the bulk cylindrical phase can fit
in a pore of width W∗ = 2 + d∗0 +

√
3/2l∗0 ≈ 9.5, where the term

√
3/2l∗0 accounts for

the distance in the z direction between the centres of two layers of cylinders in which
the distance between the nearest cylinders is l∗0 . Surprisingly, this pore size estimate is
significantly larger than the actual pore width (W∗ = 7), but the cylindrical phase is still
able to survive by deformations of the cross-section of the cylinders and probably also
by adjusting the distance between them. As a consequence of this, the average energy of
the confined fluid in the W∗ = 7 pore (〈u∗〉 = −1.904) is higher than in the bulk system
(〈u∗〉 = −2.065).

Following the same reasoning, the pore size W∗ = 9 has almost the appropriate size to
fit two layers of the bulk hexagonal phase and, thus, one would expect that the fluid would
be less compressed in this case. This is exactly what we observe in the simulations. The
fluid still organises into two layers of cylindrical clusters, which now adopt nearly circular
cross-sections as in bulk. On the contrary, for W∗ = 11, the pore size is somewhat wider
than needed for hosting two perfect layers of the bulk cylindrical phase. This is partially
offset by forming slightly thicker cylinders and increasing the distance between them as
compared to the bulk phase (see Table 2). Note that the orientation of the cylinders with
the simulation box is different depending on the pore size to adjust the separation between
the nearest cylinders to a value similar to that of the bulk system.

The cylindrical phase is destabilised at temperatures slightly lower than in the bulk
system, in particular it remains stable up to T∗ ≈ 0.30, whereas in bulk it survives up to
T∗ ≈ 0.35 (Figure 2). The number of layers of cylinders can again be easily inferred from
the local density profiles ρ(z) and, except for the narrower pore, the layering of particles
at low temperatures is enhanced as compared to the cluster-crystal (see Figure 5). For
the pore size W∗ = 5, one single layer of cylinders is formed, and the density profiles
exhibit two rounded peaks of enhanced density, indicating a mild tendency of the particles
in the cylinders to sit preferentially in these two planes. For W∗ = 7 and W∗ = 9, two
layers of cylinders are formed, and this is reflected in the density profiles by a region of
low density between the two layers. At low temperatures, each of these two layers of
cylindrical clusters exhibits three peaks, the intensities of which vary with the pore width.
For the two pore sizes, the central peak in each of the two layers is the highest. The two
edge peaks away from the centre of the cylindrical clusters are equal in the W∗ = 9 pore,
but in the W∗ = 7 pore the peak closer to the pore centre is smaller.

These profiles are consistent with the previous observation from the 3D local density
plots shown in Figure 3, in that the cross-sections of the cylinders is circular in the W∗ = 9
pore, but are significantly deformed in the W∗ = 7 pore. The two peaks closer to the pore
centre become shoulders of the central peak of each layer of cylindrical clusters at T∗ = 0.3
in the W∗ = 7 pore, but they survive up to T∗ = 0.4 in the W∗ = 9 pore. The same occurs
for the region of very low density between the two layers of cylinders that persists up to
T∗ = 0.3 in the W∗ = 9 pore, but that becomes a region of small density in the W∗ = 7
pore at this same temperature. For W∗ = 11, the two layers of cylinders are not separated
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by a region of low density even at the lowest considered temperature. The reason is that
the cylinders adopt a sinusoidal shape in the direction perpendicular to the walls to use as
much as possible of the free pore volume that remains by fitting two layers of cylinders in
this wide pore.

Visual inspection of the configurations reveals that, as in the bulk system [17], at low
temperatures the cylindrical clusters adopt ordered configurations consisting in decagonal
tubes made by interpenetration of isosahedra sharing a five-fold axis. As can be seen in
Figure 6, central panel, the evolution of the fraction of particles with icosahedral symmetry
with temperature exhibits a similar behaviour to the bulk system. Unsurprisingly, the
results are almost exactly the same as those of the bulk system for the most commensurate
pore W∗ = 9, and the larger reduction of order is observed for the most incommensurate
pore W∗ = 7.

3.1.3. High Density: The Lamellar Phase

At high densities (ρ∗ ≈ 0.42–0.49) and T∗ = 0.3, the fluid organises into lamellar
structures for the three larger considered pore sizes, as in bulk. This is the expected
behaviour, as the geometry of the pores is fully compatible with the lamellar phase. At
W∗ = 5, the fluid occupies the whole pore volume, that is wider than the size of bulk
lamellae (d∗0 = 2.9 to be compared to d∗0 = 2.2 in bulk, see Table 2). For W∗ = 7, two
lamellae are formed, this time narrower than in the bulk system (d∗0 = 1.5 to be compared
to d∗0 = 2.2 in bulk), and with a slightly shorter separation between them (l∗0 = 3.7 versus
l∗0 = 4.6 in bulk). For W∗ = 9, the system assembles into two lamellae, the thickness
and interdistance of which are comparable to those in bulk, indicating that this pore size
matches very well the periodicity of the bulk lamellar phase. For W∗ = 11, a third lamella
is formed, although at this temperature, T∗ = 0.3, both the width of the lamellae and
especially the distance between them are reduced with respect to the bulk phase to adjust
to the available pore volume.

The lamellar phase is able to survive up to T∗ = 0.4 for all pore widths, i.e., at tem-
peratures higher than the bulk system in which the transition occurs at T∗ ≈ 0.35 [17] (see
Figure 2). Again this is not entirely surprising, as the geometry of the pores is compatible
with the lamellar phase. The density profiles ρ(z) further reveal that the lamellar phase is
particularly stable with temperature, especially for the pore sizes W∗ = 7 and W∗ = 11, in
which the fluid organises into two and three lamellae, respectively. Each lamella is made of
two molecular layers, as evidenced by the two sharp peaks observed in each layer up to
relatively high temperatures (up to T∗ = 0.4 for W∗ = 7 and up to T∗ = 0.3 for W∗ = 11).
The sharpness of these peaks indicates that the internal structure of the lamellae remains
ordered at these temperatures. Curiously, for W∗ = 11 and T∗ = 0.4 the two lamellae
close to the pore walls are still very structured (they are internally ordered), but the middle
one exhibits two much more rounded peaks (it is internally disordered). This indicates
that the proximity to the walls induces the internal ordering of the lamellae, and such
internally ordered lamellae can coexist with disordered lamellae away from the walls. For
the pore width W∗ = 9, only two lamellae are formed, but each one is now composed of
two equally populated molecular layers (next to the pore walls) and by an incomplete third
hexagonally-packed layer facing the centre of the pore, signalled by a less sharp peak. In
this case, the peaks in each lamella are already rounded at T∗ = 0.3, indicating that in this
case the internal ordering of the lamellae is less significant at a high temperature. As found
for the cluster-crystal and the cylindrical phases, the tendency of the particles to arrange in
layers parallel to the walls is significantly reduced in the narrowest pore (W∗ = 5), which
only exhibits fairly rounded peaks even at low temperatures.

The internal ordering of the lamellae was investigated by measuring the fraction of
particles with solid-like environments using the Lechner and Dellago local order param-
eter [37]. As can be seen in Figure 6 (bottom panel), the fraction of solid-like particles as
a function of temperature is strongly dependent on the pore size, differing also from the
bulk phase for all pore sizes. At T∗ = 0.2 the vast majority of the particles have local solid
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environments (close to 100%) for all pores, except for W∗ = 9, in which case it drops to 90%.
This is due to the growth of a third incomplete molecular layer facing the centre of the pore
in each lamella. For the W∗ = 7 pore, the transition from ordered to disordered lamellae
is discontinuous as in bulk, but occurs at a higher temperature than in the homogeneous
system. For W∗ = 11, the decay of the number of particles in ordered environments is more
gradual, e.g., at T∗ = 0.4 about 60%–65% of the particles have solid-like environments. The
reason is that, as mentioned before, the two lamellae at the pore walls become disordered
at a higher temperature (T∗ = 0.4) than the one at the centre of the pore (T∗ = 0.3) (see
Figure 6). These results indicate that the walls promote the internal ordering of the lamellae
(i.e., they remain ordered up to a higher temperature than in bulk), but those lamellae that
are not next to the walls get ordered at similar temperatures as in bulk. Finally, for W∗ = 5
and W∗ = 9, the lamellae become disordered at lower temperatures than in bulk, which is
attributed to some incommensurability of the bulk lamellar phase with these pore sizes.

3.2. Dynamic Properties

Once we had characterised the equilibrium phase behaviour, we also analysed the
dynamics at temperatures around which the periodic microphases start to form. The MSD
measured in the four pore sizes at densities at which the cluster-crystal, the cylindrical and
lamellar phases are formed are collected in Figure 7, and the diffusion coefficients obtained
from these data are plotted in Figure 8. The comparison of the diffusion constant is not
made either at constant density nor at constant chemical potential for all the pores, as it
is often done in the literature. Instead, in this work we choose to make the comparison
under those conditions at which the most ordered structure was obtained in each pore
size (which are those shown in Figure 3), as our aim is to investigate if the diffusion of the
particles is altered by confinement under the temperature and density conditions at which
the periodic microphases start to form from the fluid phase. Note that it is not always
possible to obtain different ordered structures at the same density or the same chemical
potential for different sizes of the pores, because, due to incommensurability, these ordered
structures may be destabilised and become disordered.

3.2.1. Low Density: Cluster-Crystal

The behaviour of the MSD at low densities and temperatures just above those at which
the cluster-crystal starts to form, T∗ = 0.4, is qualitatively similar in the four considered
pore sizes and also in the bulk system. The MSD at long times is diffusive for all the pore
sizes and in the bulk system. The diffusion coefficient, calculated using Einstein’s relation
(Equation (7)), as a function of pore size is shown in Figure 8. As can be seen, the diffusion
coefficient has a nonmonotonic behaviour with the pore size. The maximum diffusion is
achieved for the narrowest pore, in which case the diffusion coefficient is even higher than
for the bulk system. The minimum diffusion corresponds to the W∗ = 7 pore, and then
diffusion increases with pore size until it reaches the bulk behaviour. Note that the density
in the narrowest pore is somewhat lower than in the remaining pores and than in bulk, and
this might partly explain why diffusion is faster in this system. However, it is also worth
mentioning that the narrowest pore is the only one in which the fluid is still organised in
intermediate size clusters at T∗ = 0.4, as in the bulk system (see Figure 4, right panel). On
the contrary, in the remaining pore sizes, the CSD distributions are shifted to larger sizes.
It is important to highlight that the nonmonotonic variation of the diffusion constant with
the pore size cannot be explained solely based on the density of the fluid. For example, the
diffusion constant for W∗ = 7 (ρ∗ = 0.1561) is lower than that for W∗ = 9 (ρ∗ = 0.1668), in
spite of the density of the fluid being higher in the latter case.

On the contrary, at a temperature just below that at which the periodic microphases
start to be seen, T∗ = 0.3, the behaviour of the MSD at long times depends on the pore
size. For the narrowest pore, the particle movement is diffusive as in the bulk system, but,
for the remaining pores, it becomes subdiffusive, this effect being more pronounced for
the pore size W∗ = 7. Our hypothesis is that the lower diffusion in the pore W∗ = 7 is a
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consequence of the higher ordering of the clusters as compared to the defective structures
found for W∗ = 5 and especially for W∗ = 9, as can be seen in the density isosurface plots
shown in Figure 3.
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crophases start to spontaneously form.

3.2.2. Intermediate Density: Cylindrical Phase

In the cylindrical phase the particle movement is diffusive at long times either at
temperatures just above (T∗ = 0.4) and below (T∗ = 0.3) those at which the cylindrical
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clusters start to form. At T∗ = 0.4, the diffusion coefficient adopts similar values for the four
pore sizes, being higher in confinement than in the bulk system (Figure 8, central panel).
Note that this cannot be explained on the basis of the densities, because, depending on the
pore size, the chosen states exhibit both higher and lower densities than the bulk system.
Curiously, both in confinement and in bulk, the system is organised in a percolating fluid at
this temperature. Our hypothesis is that, consistently with the shift to lower temperatures
of the stability region of the cylindrical clusters with respect to the bulk system (Figure 2),
confinement partly destroys the clustering at these intermediate densities, thus facilitating
the particle diffusion.

At T∗ = 0.3, the diffusion coefficient is similar in the bulk system and in the W∗ = 5
and W∗ = 11 pores, adopting somewhat larger values for W∗ = 7 and W∗ = 9. It is
important to note, however, that cylinders are parallel to one of the edges of the square
section of the simulation box in the W∗ = 7 and W∗ = 9 pores, whereas for W∗ = 5 and
W∗ = 11, they are tilted with respect to one of the edges. Thus, in the former case each
cylinder is an independent cluster, but in the latter case all the cylinders are connected to
each other due to the periodicity of the system. As a consequence, the cylindrical clusters
can move with respect to their neighbours in the narrowest and widest considered pores,
but not in the W∗ = 7 and W∗ = 9 pores. Thus, it is not possible to make a fair comparison
between the diffusion coefficients as a function of the pore sizes in this case.

3.2.3. High Density: Lamellar Phase

In the lamellar case the MSD exhibits diffusive behaviour at long times at temperatures
somewhat above (T∗ = 0.5) those at which the lamellar phase starts to form. At this
temperature, the diffusion coefficient under confinement is significantly lower than that of
the bulk system for the four considered pore sizes. Our hypothesis is that this could be
related to the more efficient packing obtained in the four confined systems as compared
to that in the bulk system. Note however, that there is some ambiguity on how to define
the density in the confined pores, as one can take into account or not the particle excluded
volume close to the pore walls.

At T∗ = 0.4, the diffusion coefficient of the lamellar phase increases with the pore
size, except for W∗ = 7, the size at which the fluid exhibits the higher diffusion under
confinement. As can be seen in Figure 7, the scaling of the MSD with time reveals a
superdiffusive behaviour in this case (i.e., the MSD is proportional to tβ, β being an
exponent higher than 1). Our hypothesis is that the origin of this enhanced diffusion is
related to the smooth surfaces of the formed lamellae in this pore size. For W∗ = 7, the fluid
organises into two lamellae, each one made of two hexagonally-packed layers of particles.
As a consequence of the smooth lamellar surfaces and pore walls, the two lamellae can
slide with respect to each other due to the thermal movement, leading to a high diffusion
coefficient in this case. This effect is not observed for W∗ = 9 and W∗ = 11, because
the lamellae surfaces are no longer smooth, due to the formation of an incomplete third
layer at W∗ = 9 and to the disordered local structure of the central lamella at W∗ = 11.
At T∗ = 0.4, the diffusion coefficient is only slightly higher in bulk than in any of the
considered confined systems. It is interesting to note that the fluid is organised into a
lamellar phase at this temperature in the three largest considered pores, but it forms a
percolating fluid in bulk.

4. Discussion and Conclusions

In this work we have studied the assembly of colloids with competing interactions
when confined in narrow slit pores at densities at which the cluster-crystal, the hexagonal
and the lamellar phases are stable in bulk. We have found that those periodic modulated
phases also form under confinement. In particular, our simulations predict that the cluster-
crystal and the lamellar phases are often stable up to higher temperatures when confined
in slit pores than in the bulk system, but that of the cylindrical phase is lower than in
bulk. In the cases in which the pore size is not perfectly commensurate with the pore
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width, the fluid is often able to adjust the cluster shape, size and interdistance between
clusters to fit in the available volume in the pore. One exception to this general behaviour
is that the cluster-crystal was not formed even at very low temperatures in the W∗ = 9
wide slit pore, which can be easily rationalised because this pore size is incommensurate
with the corresponding bulk cluster-crystal. Thus, we can conclude that, in general, the
presence of walls promotes the formation of the lamellar phase, as expected, but also of
the cluster-crystal. The results obtained in this work are similar to those observed in block
copolymers confined in slit pores [38]. This suggests that the universality of the phase
behaviour in systems with competing interactions observed in bulk can be extended to
confined systems.

We have also observed that the presence of walls induces the ordering of the particles
within the clusters (spherical, cylindrical or lamellar) in layers of particles parallel to
the pore walls. This has already been observed in simple and complex fluids (see, e.g.,
Refs. [24,39]), and also recently in the adsorption of colloids with competing interactions at
an attractive surface [40]. In the case of the lamellar phase, this leads to the internal ordering
of the lamellae at higher temperatures than in the bulk system, and to an interesting
behaviour in which the lamellae adjacent to the pore walls remain ordered while the
lamellae further away from the walls become disordered, a phenomenon observed in the
widest considered slit pore. The local ordering in the vicinity of a flat surface has also been
observed in experiments of block copolymers under confinement [41]. Both our simulations
and the experiments already performed in different systems with competing interactions
under confinement might help to design new experiments under the proper conditions to
finally obtain ordered microphases in colloidal systems.

Finally, we found that at temperatures just above those at which periodic microphases
start to be seen, the diffusion coefficient of the confined fluid can adopt values higher or
lower than in bulk depending on the density and on the pore width. In particular, we
observed that the diffusion coefficient of the colloidal particles depends on the pore width.
This dependence is complex, because the walls induce the internal ordering of the clusters.
For a given phase (cluster-crystal, cylindrical or lamellar), the observed nonmonotonic
behaviour with the pore size cannot be explained based solely on the density of the confined
fluid, as it is often found that the diffusion coefficient does not correlate inversely with
the density of the confined fluid, as one would expect for normal fluids. Depending on
the shape of the clusters and the separation between the pore walls, it is possible to obtain
either larger and smaller values of the diffusion coefficient than in the corresponding
bulk systems.

The main conclusion of our work is that the formation of the lamellar and cluster-
crystal phases appears to be favoured by confinement in simple slit pores. Although in
some cases, the diffusion might be lower in confinement than in bulk, the formation of the
periodic microphases was observed in relatively short times in our simulations, indicating
that there should not be important kinetic bottlenecks that hinder their formation. We
suggest that confining colloids with competing interactions in simple slit pores might be a
promising route for the experimental observation of those phases.
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26. Serna, H.; Noya, E.G.; Góźdź, W.T. The influence of confinement on the structure of colloidal systems with competing interactions.
Soft Matter 2020, 16, 718–727. [CrossRef] [PubMed]
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