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ABSTRACT: The behavior under confinement of nanoparticles Self-assembled colloidal aggregates in bulk and confined in a cylinder
interacting with the short-range attraction and long-range repulsion
potential is studied by means of Monte Carlo simulations in the
grand canonical ensemble. The study is performed at thermodynamic
conditions at which a hexagonal cylindrical phase is the most stable
phase in bulk. In these conditions, cylindrical confinement promotes
the formation of helical structures whose morphology depends upon
both the pore radius and boundary conditions. As the pore radius
increases, the fluid undergoes a series of structural transitions going
from single to multiple intertwined helices to concentric helical
structures. When the pore ends are closed by planar walls, ring and toroidal clusters are formed next to these walls. Dependent
upon the cylinder length, molecules away from the pore edges can either keep growing into ring and toroidal aggregates or
arrange into helical structures. It is demonstrated that the system behaves in cylindrical confinement in the same way as the
block copolymer systems. Such behavior has not been observed for the colloidal systems in cylindrical confinement with only
repulsive interactions.

B INTRODUCTION molecular simulations.” We found that the behavior of the
hexagonal phase in cylindrical pores is very similar for
polymeric and colloidal systems characterized by competing
interactions. We may expect that many results obtained thus
far for polymers®” might be also applicable to colloidal
systems. Thus, the knowledge already obtained for polymers
can be used as a guidance and inspiration for studies of
colloidal systems with competing interactions.

We stress that the structures in the system studied here are
substantially different from previously studied helical structures
of colloidal particles in cylindrical confinement. Previously
studied systems were composed of particles interacting with
hard or soft repulsive potential, such as hard spheres® or
Yukawa’ potentials, and the helices were observed at a high
pressure and for very narrow cylinders of the order of a few
hard core diameters. Our colloidal system is unique in the
sense that its behavior is like the behavior of block copolymers.
We observe the helical structure for not only narrow cylinders
but also wide cylinders and at a low pressure. The structures
that we obtain are almost identical to the structures observed
in block copolymers, despite different molecular compositions

Systems with competing interactions are widespread in nature.
Mixtures of surfactants, lipids, diblock copolymers, and colloids
are examples of such systems. They are important in biology
and industry. It has been demonstrated that all of these
systems behave in a similar way, despite the different molecular
compositions of their constituents.'~ Lamellar, hexagonal, and
triply periodic phases, such as gyroid or diamond structures,
are found in all of these systems, which exhibit phase diagrams
with the same topology. As a result of its relevance in
technological applications, among these systems, diblock
polymers have been more intensively studied, both exper-
imentally and theoretically. Lipid mixtures have also attracted
much attention as a result of their role as basic building blocks
in living organisms. In colloids, competing interactions have
been traditionally assumed to be attainable by combining
short-range attractive depletion with long-range repulsive
electrostatic interactions. However, this view is starting to be
questioned,” because despite the tunability of these inter-
actions in colloids, the formation of mesophases in bulk
predicted by theory and simulations remains elusive in

experiments. The remarkable similarity between the bulk of these systems. We show that the colloidal systems with
phase diagram of simple isotropic short-range attraction and competing interactions may behave in a way similar to block
long-range repulsion (SALR) models and that of diblock copolymer systems in not only bulk but also confined
copolymers has been confirmed by recent computer geometry. The formation of helical structures in cylindrical
simulations.” In this paper, we show that this similarity also
extends to confined systems. With this aim, we performed Received: October 7, 2018
computer simulations for a three-dimensional off-lattice model Revised:  December 3, 2018
for which the phase diagram has been recently calculated by Published: December 27, 2018
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Figure 1. Illustration of the structure of the simulated fluid. (a) Snapshot showing the locations of the molecules. (b) Average local density, where
the color denotes the values of the local density according to the color map below the image. (c) Isosurface obtained for the value of the local
density p;, = 0.4. The radius of the confining cylinder is R = 3.50, and its length is L = 606. The mean density is (p) = 0.279.

confinement is quite common and present in many different
systems.'”"" However, the fact that such different systems as
colloidal particles and block copolymers show striking
similarity in a number of helical structures is unusual and
presented for the first time in our work. Experimentally,
colloidal crystals with a helix-like shape have been obtained
under cylindrical confinement.'”™"* These helical structures
co-assemble with very narrow pores (just few colloidal particle
diameters), where colloidal particles behave like hard spheres.
Similar findings were obtained numerically.® The structures
that we present here are different from those found before for
colloidal spheres because the system that we simulate has
competing interactions and does not need a very tight
confinement to self-assemble into helices, as we show in our
results. Recently, an experimental protocol that allows for the
control of the morphology in block copolymer nanorods
confined into nanopores was developed.'> The multi-helical
structures obtained in that investigation are quite similar to our
findings.

B MODEL AND SIMULATION METHOD

In complex fluids, such as colloidal suspensions, the short-range
attraction comes from entropic depletion forces and the long-range
repulsion is due to electrostatic interactions.'® Regardless of the
mathematical shape of the SALR potential, there exists universality in
not only the ordered phases that appear in each case but also the
sequence of appearance: crystal-cluster phase, cylindrical phase,
double gyroid phase, and lamellar phase. This has been demonstrated
by theory and simulations."”>"” In this paper, interactions between
the molecules are described by the square-well-linear potential given

by

[¢3] r<o
" - c<r<lo
u r) =
SALR te(k —r/o) do<r<ko
0 r> ko (1)

The unit of energy is ¢, and the unit of distance is ¢, where o is the
hard core diameter. ¢ and ¢ are used to express the temperature,
chemical potential, internal energy, density, and distance in reduced
units. We set the values { = 0.05, 1 = 1.5, and k = 4 as those in the
simulations of the bulk system.’

The Monte Carlo simulations were performed in the grand
canonical ensemble at fixed chemical potential, temperature, and
volume (, V, and T). The simulated systems contained between 300
and 3300 particles. Systems were equilibrated over 1—15 X 10° Monte
Carlo steps depending upon the system size. Averages were taken over
5 X 10® Monte Carlo steps. A Monte Carlo step consisted of a trial
move that can be a displacement, addition, or deletion of a molecule.

In this work, we focused on the study of the behavior of the SALR
fluid confined in a hard repulsive cylinder. Both axially periodic and
finite pores whose edges are closed by hard walls were considered.
The effects of the cylinder radius (R) and length (L) were investigated
by performing simulations of pores with varying radius 26 < R < 140
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and length 156 < L < 600. The radius R is defined here as the distance
from the center of the cylinder to the point where the external
potential is infinite. The study was conducted at a thermodynamic
state at which the hexagonal cylindrical phase is the most stable phase
in bulk. The chemical potential of the bulk hexagonal phase at a given
temperature and density was estimated from a series of simulations at
different chemical potentials at the corresponding temperature. In
particular, we chose a state at T = 0.35 and p = —2.1, which is located
roughly at the center of the stability region of the hexagonal phase
according to the phase diagram reported in ref 5. We checked that the
structure of the fluid at these conditions indeed coincides with that of
the hexagonal cylindrical phase.

Examples of the simulation results are presented in Figure 1. A
snapshot of a typical configuration of the confined fluid is presented in
Figure la. Figure 1b shows the local density, where colors indicate the
value of the local density according to the color map located below
the image. Because it may be difficult to see the structure of the fluid
from the three-dimensional local density images, the isosurface
obtained for a fixed value of the local density is also given. An example
of such an isosurface is presented in Figure lc. The value of the
density used to plot the isosurface is p;,, = 0.4

B RESULTS

Let us start by presenting the results for the fluid confined in
an axially periodic cylinder (i.e., applying periodic boundary
conditions along the cylinder axial direction). The summary of
the results of our calculations is presented in Figure 2. It is
interesting to note that the molecules forming the helical
structures are arranged along curves, which can be described
by an equation of a helix, x(t) = a cos(t), y(t) = a sin(t), z(¢) =
bt, where t € (0, 27) is the independent variable, a is the
radius, and 27b describes the vertical separation of the loops of
the helix. These curves are shown in Figure 2 with different
colors (red, green, blue, and yellow).

At the chosen thermodynamic state, the molecules self-
assemble in strai§ht cylinders that are arranged in a hexagonal
lattice in bulk.""® According to our calculations, the cylindrical
confinement destroys this order, at least for pores with a radius
within the range of 3.50 < R < 146. When the radius of the
confining cylinder is comparable to the equilibrium radius of
the cylindrical aggregates in the bulk hexagonal phase (R =
26), molecules still form a straight tubular structure. In this
case, the geometrical restrictions are incompatible with any
non-straight arrangement. However, when the pore diameter
reaches the value of the order of the equilibrium distance
between neighbor cylinders in the bulk hexagonal phase (2R >
60), there is a structural transition to helical arrangements.
Above this threshold, the system organizes into single or
multiple helical structures, initially formed by one layer that is
transformed into concentric multi-layer helical structures when
the pore radius increases. The growth of an additional layer
always starts by the formation of a straight cylinder at the
center of the previously formed helical structure. This straight
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Figure 2. Possible configurations of the hexagonal phase in cylindrical
confinement for different values of the cylinder radius 3.56 < R < 100
for axially periodic pores. The gray surface shows points with local
density p;,, = 0.4. Two different views of each configuration are
depicted: along the parallel (bottom images) and perpendicular (top
images) directions to the cylinder axis. The length of the confining
cylinder is 246 < L < 400.

cylindrical aggregate is able to survive over a relatively broad
range of radii (now lower than the cylinder equilibrium
distance in bulk, probably as a result of the softness of the
more external coaxial helical structure), until, at a given radius
size, a transformation into a second helical structure concentric
to the external helix becomes favorable. Interestingly, these
structures are remarkably similar to those obtained for
confined surfactants'” and diblock copolymers.” The behavior
of all of these systems is determined by competing interactions,
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although the physical origin is different in each case. In block
copolymers, interactions are anisotropic and emerge from the
immiscibility of different polymer components. Here, we have
considered the simplest case of confining potential (hard
cylinder), but it seems reasonable that the main trends will not
change when softer confining potentials are used. This idea is
also supported by the similarity between our simulations and
the real experiments in block copolymers. As already
mentioned, it is known that the systems with competing
interactions have phase diagrams with the same topology in
bulk. Our results strongly support the idea that this universality
also extends to the behavior under confinement. This is also
supported by the recent theoretical calculations that show that
the gryroid phase under confinement and under shear exhibit a
very similar behavior in both systems.*’

We have analyzed the effect of boundary conditions on the
structure of the fluid for two representative values of the
cylinder radius. For a narrow pore with a diameter close to the
distance between neighbor cylinders in the bulk phase, we have
observed the formation of a single helix, as presented in Figure
4a. We have investigated the effect of the length in axially
periodic pores. Note that the length of the system can have a
strong impact on the structure of the helical arrangements,
depending upon whether the chosen system is commensurate
or not with the equilibrium pitch of the helix in the
thermodynamic limit. We have observed that the helical
structure is maintained for all considered lengths up to L =
600. However, the helical structure behaves like an elastic
spring that can be stretched or shortened with an energy
penalty but without rupturing it when the system length is
varied. Of course, the helix cannot be stretched to a straight
line. At some length, it becomes unstable and a new structure
is formed with increased numbers of coils in the helix. The
equilibrium period of the helix can be obtained by performing
simulations at different lengths. In Figure 3, we present the
values of the energy and density calculated for different values
of the cylinder length. Only the points with the lowest energy
for a given number of pitches in the cylinder are shown. We
observe that the distance between minima, for the single and
double helix, is between 7.5¢ and 80. We estimate that the
periodicity of the single helix is of the order of L, ~ 7.5¢ and
the periodicity of the double helix is of the order of L, ~ 160.
The size and shape of the confining walls determine the
topology of the structures under confinement. It has to be
noted that, in the case of cylinders, the colloidal particles form
helices for almost all of the values of the cylinder radius, unless
the cylinder is very narrow. To avoid formation of helical
structures, the cross section of the confining cylinder must be
changed to a triangle, a square, or a hexagon.

We have also considered the case of a finite cylinder whose
edges are closed by hard planar surfaces. The external potential
is infinite at z = 0 and L, where z is the distance along the axis
of the cylinder. In this case, disk-like clusters are formed at
both ends of the confined cylinder. Molecules in the middle of
the cylinder can arrange in two different ways depending upon
the pore length. At some system lengths, molecules assemble
into disk-like clusters along all of the cylinder, whereas in other
cases, a single helical cluster forms at the central region of the
pore capped with two disk-like clusters at the cylinder ends.
Interestingly, structures composed of only disk-like clusters
exist, even for very long pores. We speculate that these
structures appear when the pore length does not match the
preferred pitch of a helix.
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Figure 3. (a) Average energy per particle and (b) average number density as a function of the cylinder length for the configurations with a single
and double helix. The radii of the cylindrical pores are R = 3.50 for a single helix and R = 4.5¢ for two helices.
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Figure 4. Single helices formed in cylindrical pores of radius R = 3.56. The configurations were obtained for (a) axially periodic pores and (b) pores
with closed ends. The gray surface shows points with local density p;,, = 0.4. The top view of each image displays the local density projected on a
plane perpendicular to the cylinder axis. The local density is represented by colors according to the color map below the image. The mean densities
are (a) for shorter cylinder (p) = 0.284 and longer cylinder (p) = 0.279 and (b) for shorter cylinder (p) = 0.3288 and longer cylinder {p) = 0.286.

The second case corresponds to a larger radius of the
cylinder for which two intertwined helices are formed.
Simulations of axially periodic pores of varying lengths again
reveal that the helical structure is always formed, irrespective of
the system length. Our simulations indicate that the period of
this double helical structure is larger than that of the single
helix, of the order of L, = 160, i.e., roughly twice that of the
single helix. The smallest periodic element is shown in Figure
Sa on the left side. For the closed pores, we have observed that
the particles self-assemble into toroidal clusters at both ends of
the pore. Analogously to the case of the narrower pore
described above, particles at the central part of the pore can
adopt two different configurations depending upon the pore
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length, one configuration consisting solely of toroidal clusters
through the whole pore and another configuration in which
molecules at the pore center self-assemble into a double helix
that is connected to the toroidal clusters at the pore edges (see
Figure Sb).

It should be noted that the helices formed in our simulations
were either right- or left-handed, without any preference for
either one. We have not found any differences in their energy
or stability because they are like mirror images of each other.
An example of two helical structures that are like mirror images
is presented in Figure 6. Obviously, in double helical
structures, the two intertwined helices always exhibit the
same handedness, which can be explained by considering the
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Figure 5. Double helices formed in cylindrical pores of radius R = 4.56. The configurations were obtained for (a) axially periodic pores and (b)
pores with closed ends. The gray surface shows points with local density p = 0.4. The top view of each image shows the local density projected on a
plane perpendicular to the cylinder axis. The local density is represented by colors according to the color map below the image. The mean densities
are (a) for shorter cylinder (p) = 0.283 and longer cylinder (p) = 0.280 and (b) for shorter cylinder {p) = 0.329 and longer cylinder {(p) = 0.295.
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Figure 6. Left- and right-handed configurations obtained for the same set of parameters of the confining pore: (a) single helix at R = 3.56, L = 300,
and (p) = 0.282 and (b) double helix at R = 4.56, L = 300, and {p) = 0.280.

packing and topological properties of helices. This also holds
for concentric helical structures. The handedness of the inner
and outer helices was always the same. Another interesting fact
is that, for large pores, it is common that the confined fluid can
assemble into more than one stable structure for a given set of
pore parameters. An example of two configurations existing for
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the same pore dimensions is presented in Figure 7. The
particles can self-assemble in either a double or triple helix.
These structures exhibit 2- and 3-fold rotational symmetry
along the pore axial direction, respectively; i.e., the double helix
structure superimposes into itself when a rotation of nz radians
about the pore axis is performed, and the same is true for the
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Figure 7. Example of two different configurations obtained for the
same set of parameters of the confining pore at R = 5.5¢ and L = 260:
(a) {p) = 0.268 for two helices and (b) (p) = 0.265 for three helices.

triple helical structure for rotation angles of n27/3 radians,
with n being an integer number. The existence of two types of
structures is rather common and occurs over quite a broad
range of radii for not only the helical structures consisting of a
single shell but also the structures composed of concentric
helices that appear for wider pores. We can speculate that, in
the systems we have studied and in general in SARL systems,
one may observe two or more structures with the same free
energy, but to check this hypothesis, extensive calculations of
the free energy for different radii and lengths of the confining
cylinder are required.

B SUMMARY AND CONCLUSION

We have demonstrated how the structure of the hexagonal
phase formed in the fluid interacting with SALR potential is
modified by confinement. We have observed that cylindrical
confinement induces the formation of helical structures over
the whole range of pore radii considered in this work. The
pitch and radius of the helical structures can be tuned by
adjusting the width of the confining cylinder. For wider
cylinders, the confined fluid organizes into intertwined or
concentrically arranged helices. In all of the structures formed
by more than one helix, all helices exhibited the same
handedness. Looking at the density profiles of concentric
helical structures along the pore axial direction, one can see
patterns formed by concentric rings of high density
intercalated with rings of low density. The distance between
these concentric rings remains constant and depends upon the
range of repulsive and attractive interactions of the interatomic
potential.

We may expect that the formation of helical structures can
also be realized in any system characterized by competing
interactions when confined in a cylindrical pore. In most such
systems, the hexagonal phase is stable. Examples of such
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systems are mixtures containing surfactants, lipids in water, or
block copolymers. They are widespread in nature and industry.
We hope that our investigations may help to understand the
formation of similar structures in living organisms and
designing technological processes for the development of
new materials. Recent simulational studies have shown that
one potential difficulty in observing mesophases in colloidal
experiments (provided that the experimental problems in
obtaining a colloidal system with an isotropic SALR interaction
can be solved’) is trapping the system in a variety of
metastable states.”’ We can speculate that the investigation of
ordered structures in simple confined geometries may be much
easier than in bulk because the number of possible metastable
states is likely to be reduced in tight confinement conditions.
We hope that the results of computer simulations presented
here may be used as a guidance for new experimental studies of
colloidal systems with competing interactions.
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