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ABSTRACT: The shape transformations of lipid vesicles induced
by the adhesion to a flat surface is investigated. We perform the
calculations within the framework of the Helfrich spontaneous
curvature model. The calculations were performed for a few values
of the reduced volume and the spontaneous curvature. The range
of stability for different shapes (oblate, prolate, and stomatocyte)
of adhered vesicles is determined. New physical phenomena such
as budding induced by the adhesion of vesicles are reported.

■ INTRODUCTION
The adhesion of biological cells and vesicles is highly relevant
in understanding interactions between cells. It is also important
in biotechnological applications such as material implantation
or biosensors. Adhesion may play an important role in drug
delivery by small vesicles when they have to be attached to a
cell to release its content into the cell. There are many different
mechanisms of the adhesion. They may result from attraction
of the bilayer to the surface1,2 or other bilayers3 or from an
interaction of sticker molecules incorporated in the adhering
surfaces.4,5 The amount of the surface area that is in contact
because of adhesion may depend on the strength of the
interactions or the concentration of the sticker molecules.6,7 It
may also depend on the external force, which brings in contact
two vesicles or a vesicle and a solid substrate. In this study, we
focus on the shape transformations of lipid vesicles caused by
their attachment to a flat solid surface. We do not consider any
specific mechanism of adhesion. We consider a general case,
which may be realized by different physical mechanisms. We
assume that a vesicle is already attached and we are interested
in the shape of the vesicles with different amounts of the
surface of the vesicle in contact with the flat substrate.
The ensemble that mimics such experimental situations is

the one with constant surface area S and volume V. Such a
physical situation is well described by the elastic energy8−10

given by
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where κ is the bending rigidity, C1 and C2 are the principal
curvatures, C0 is the spontaneous curvature and the integral
(1) is taken over the surface of a closed vesicle. The curvature
energy is calculated over the whole surface of the vesicle. We
have also assumed that the Gaussian rigidity is the same for the

adhered and free membrane. No topology changes are
assumed, therefore the integral over the Gaussian curvature
contributes a constant value and is omitted in eq 1. In order to
mimic the experimental conditions, the constraints of constant
surface area S and volume V are imposed.
Vesicle shapes can be well-approximated in numerical

calculations by surfaces, which are rotationally symmetric.
Therefore, the vesicles can be studied by parameterizing their
shape with the angle between the horizontal axis and the line
tangent to the shape profile, θ(s), as a function of the arclength
s. The radius r(s) and the height z(s) of the shape profile are
calculated from θ(s) according to
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In order to parameterize a closed shape, the following
constraints must be satisfied
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where Ls is the length of the shape profile. The eq 4 and 5
guarantee that the profile is smooth at the ends and eq 6
accounts for the fact that the vesicle may touch the adhesion
surface at a distance r(Ls) from the axis of rotation.
The functional (1) with the shape profile parametrized by

θ(s) is given by11
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The functional 7 is minimized numerically. The function
describing the shape profile θ(s) is approximated by the
Fourier series, eq 8.
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where N is the number of Fourier modes, and ai are the
Fourier amplitudes. Large number of the amplitudes, of the
order of one hundred, is required in order to accurately
parameterize complex shapes. θ0 is the angle at the point where
the membrane touches the adhesion surface, θ0 = θ(Ls). We
can define this angle as the contact angle and assume that it is
θ0 = π in order to keep the profile of the vesicle smooth at all
points. The value R = r(Ls) defines the contact area, A, given
by A = πR2. Thus, we can define R as an adhesion radius. The
functional minimization is replaced by the minimization of the
function of many variables.11 The functional 7 is minimized
with respect to the amplitudes ai and the length of the shape
profile Ls, under the constraint of constant surface area S and
volume V, and the adhesion radius R where
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The volume, V0, and the radius, R0, of the sphere having the
same surface area, S, as the investigated vesicles are chosen as
the volume and length units, respectively.1,12

R S/40 π= (12)

V R
4
30 0

3π=
(13)

■ RESULTS AND DISCUSSION
The behavior of free vesicles with the spontaneous curvature
C0 = 0 has been well-established.13 It has been shown that
three types of vesicle shapes are stable for different values of
the reduced volume: stomatocyte for small reduced volume,
oblate for intermediate, and prolate for large reduced volume.
However, the studies of adhered vesicles are still very scarce
despite high importance of such phenomena in biological
processes. Here, we perform a detailed analysis of the shape
transformations of the vesicles due to their adhesion to a flat
surface. We have decided to examine the behavior of vesicles,

which have been already studied in a free state.13 They are all
axisymmetric in a free state. In our study, we assume that the
part of the vesicle, which is attached to the adhesive surface, is
fixed. In experiments, it can be achieved, for example, by
sticker molecules. We can also imagine that the vesicle is kept
by laser tweezers. We are not investigating the situation where
the vesicle can freely move over the adsorbing surface and
change its orientation. Under the assumptions that we have
made all the shapes presented in the article are stable or
metastable. We are convinced that within the assumed
parametrization of the vesicle membrane we have found all
the solutions. Using more universal parametrization may result
in additional solutions. However, in most cases, new
parametrization would require new constraints and would
result in a new physical situation. We study the stability range,
shape transformations, and possible phase transitions of the
adhered vesicles. In our calculations, we assume rotational
symmetry of the vesicles and that its surface completely
adheres to the flat substrate. We do not specify the particular
type of the physical interaction of the substrate with the
surface. Instead, we assume that because of the interactions of
the substrate with the vesicle, a fixed amount of the vesicle
surface is completely attached to the flat substrate. It can result,
for example, from the attachment of the vesicle membrane to
some sticker molecules present on the substrate.
We examine how the shapes and the shape transformations

of the vesicles are altered by the adhesion to a flat surface. In
the calculations, we assume that different amounts of the
vesicle surface at the south pole adhere to the flat surface. This
portion of the adhered vesicle membrane is circular because we
assume the rotational symmetry of the vesicle shape. The
amount of the adhered membrane can be indicated by the
radius, R, of this circular patch attached to the adhesion
surface. We change the radius R from 0 to Rmax where R = 0
corresponds to a free vesicle and Rmax corresponds to the
maximum possible adhesion. Beyond Rmax, a vesicle is
ruptured.
In Figure 1, we show four families of shapes obtained for the

spontaneous curvature C0 = 0 and the reduced volume, v =
0.545, calculated for different values of the adhesion radius R.
The reduced volume was chosen as v = 0.545 because for this
value, there exist the solutions for three different types of
vesicle shapes.
Thus, three of these families originate from the solutions

obtained for free vesicles. They are shown in the second, third,
and fourth row of Figure 1. The first shape profile in each row
represents the stable solution for the smallest and the last one
for the largest value of the adhesion radius R. In the middle,
the solutions for the intermediate values are presented. For the
prolate and stomatocyte branches, the first profiles are plotted
for R = 0. Thus, they are identical to the free vesicle. For the
oblate branch, the first profile is plotted for R = 0.39. It has to
be recalled that the solution for free vesicles of the oblate
branch for the small values of the reduced volume self-intersect
or have concave shapes, which makes it impossible to maintain
this shape when the vesicle adheres to a flat surface at least
when the adhesion radius is small. When the adhesion radius
for oblate and stomatocyte vesicles is sufficiently large, we
obtain the solutions where the membrane at the south pole
and the north pole of the vesicle touches each other. This is
reflected in the values of the elastic energy where we observe a
cusp in the curve plotted for the elastic energy as a function of
the adhesion radius, as shown in the inset of Figure 1e. The
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new family of shapes shown in Figure 1a is stable only in the
case of adhered vesicles. Thus, the first stable solution is
obtained for the adhesion radius greater than zero.
The plot of the values of the elastic energies as a function of

the adhesion radius for all four branches for the full range of
stability is shown in Figure 1e. Considering the values of the
elastic energy, we can conclude that the most probable
configurations for the adhered vesicles with the spontaneous
curvature C0 = 0 and the reduced volume v = 0.545 are the
configurations, which originated from the stomatocyte branch
for the low adhesion radius and oblate vesicle for the large

adhesion radius. Because the adhesion radius depends on the
strength of the adhesion, we can expect that for the small
adhesion strength, we should observe stomatocyte-like
configurations (Figure 1c), and for large adhesion strength,
we should observe oblate-like configurations (Figure 1d). It is
worth to stress that adhesion may induce new transformation
of a vesicle, which leads to the shape not observed in the case
of free vesicles, as shown in Figure 1a. It is also worth to note
that prolate-like (Figure 1b) vesicles are not likely to survive in
an adhered state. It can be expected that the vesicles most
likely observed in experiments will be oblate ones with large
reduced volume and zero spontaneous curvature. We have
performed a series of calculations for such vesicles with a few
values of the reduced volume to check how much of the vesicle
membrane can adhere to the flat surface. We have found that
despite large values of the reduced volume, the vesicles can be
deformed in such a way that relatively large part of the
membrane can adhere to a flat surface. We have calculated that
the maximal adhesion radius can be as large as R = 0.70 in the
case of the reduced volume v = 0.98, and for v = 0.90 it is as
large as R = 0.96. The shape of the nonadhered part of the
vesicles is approximately spherical. It is interesting to note that
the height of the vesicle increases when larger and larger part
of the vesicle membrane is attached to the flat surface. The
relation between the height of the vesicle and the adhesion
process may be useful in the analysis of experimental results.
The changes of the height of a vesicle may indicate potential
changes in the strength of the adhesion.
The solutions for oblate and prolate shapes with the

spontaneous curvature C0 = 0 have always up-down symmetry.
When the spontaneous curvature is sufficiently different from
zero, this up-down symmetry is broken and the solutions with
pear-like shape are obtained. In such a case, the adhered vesicle
may behave in a different way when the smaller or the larger
spherical part of the membrane adheres to a flat surface. In
Figure 2, we present the calculations performed for the
spontaneous curvature, C0 = 2.4, and the reduced volume, v =
0.80.
In the first row (Figure 2a), we present the shape

transformation caused by the attachment of the smaller
spherical part of the vesicle to the flat surface. It can be
noticed that the neck that connects the two spherical parts of
the vesicle gets smaller when the adhered surface area of the
membrane composing a vesicle gets larger and larger, that is,
the adhesion radius is increasing. It has been estimated that R
= 0.51 is the limiting adhesion radius for the stability of the
vesicle. The limiting shape of the vesicle at R = 0.51 is shown
in Figure 2a in the last column. We can speculate that such a
behavior may lead to budding of the vesicle because of its
adhesion. The vesicle behaves in quite an opposite way when it
is attached to the surface from the other end, the larger
spherical part. When the adhesion radius is increased, the neck
widens until the limiting configuration is obtained for R = 0.61,
as shown in Figure 2b. Thus, the vesicles that have a pear
shape may behave in a different way when adhered, depending
which part of the vesicle is attached to the adhesion surface.
In Figure 2c, we present the shape transformation of a

prolate vesicle when the adhesion radius is increased. It is
worth noting that the attached prolate vesicles are stable for a
wide range of the adhesion radius 0 < R < 0.82. The second
interesting feature of the adhered prolate vesicle is its unique
shape, which is different from any free vesicle shape obtained
in the spontaneous curvature model (see the most right

Figure 1. Shape profiles for the reduced volume v = 0.545 and
spontaneous curvature C0 = 0.0 and different values of the adhesion
radius R=r(Ls). (a) New branch of the solutions - oblate-bead, (b)
prolate, (c) stomatocyte, (d) oblate branch. (e) Elastic energy, E/
(8πκ), as a function of the adhesion radius, R, for different families of
solution for the reduced volume v = 0.545 and the spontaneous
curvature C0 = 0. The inset shows that the bending energy does not
change smoothly when the membrane at the north pole of the vesicle
touches the membrane at the south pole.
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configuration in Figure 2c). It can be expected that it will be
more probable to change the shape from prolate to oblate for
adhered vesicles with such a large reduced volume when the
radius of adhesion is high, and indeed this is what we can
deduce from the plot of the elastic energy (see Figure 2e).
However, it is still surprising that there exist metastable-
adhered prolate vesicles for 0.6 < R < 0.82.
In Figure 3, the possible shape transformation of vesicles for

the reduced volume, v = 0.7277, and the spontaneous
curvature, C0 = 2.4 are shown. They look similar to the
transformations shown in Figure 2, which are performed for
the same spontaneous curvature and larger reduced volume.
However, there is a significant difference. For smaller reduced
volume, the stability range of adhered pear vesicles is increased

to as large an adhesion radius as R = 0.9. Surprisingly, the
stability range of the prolate vesicle is substantially decreased.
We have obtained adhered prolate vesicles only for the
adhesion radius in the range 0 < R < 0.14. For this range of the
adhesion radius, the shape of the vesicle does not change
significantly. There are no longer even metastable config-
urations obtained, which are significantly different from the
shapes of free vesicles as it was in the case of larger reduced
volume. For v = 0.8, the stability range of the pear-like shape
was smaller than the stability range of prolate-like vesicles, but
for v = 0.7277, it is reversed. We may speculate that budding of
the vesicles due to adhesion is more probable for the vesicles
with lower reduced volume v.

Figure 2. Shape profiles for the reduced volume v = 0.8 and
spontaneous curvature C0 = 2.4 and different values of the adhesion
radius R=r(Ls). The pear branch with the vesicle attached to the
surface with smaller (a) and larger (b) bead. The prolate (c) and
oblate (d) branch. (e) Elastic energy, E/(8πκ), as a function of the
adhesion radius, R, for different families of solution for the reduced
volume v = 0.80 and the spontaneous curvature C0 = 2.4. The inset
shows the values of the bending energy for different configurations at
the intersection.

Figure 3. Shape profiles for the reduced volume v = 0.7277 and
spontaneous curvature C0 = 2.4 and different values of the adhesion
radius R=r(Ls). The pear branch with the vesicle attached to the
surface with smaller (a) and larger (b) bead. The prolate (c) and the
oblate (d) branch. (e) Elastic energy, E/(8πκ), as a function of the
adhesion radius, R, for different families of solution for the reduced
volume v = 0.7277 and the spontaneous curvature C0 = 2.4. The inset
shows the values of the bending energy for small adhesion radii.
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The adhered oblate vesicles are stabilized for the larger
adhesion radius, as shown in the elastic energy plot in Figure
3e.
The prolate vesicles are stabilized by a larger spontaneous

curvature. Here, we would like to examine how such prolate
vesicles behave when attached to the flat surface. The shape
profiles calculated for the reduced volume v = 0.545 and the
spontaneous curvature C0 = 3.0 are shown in Figure 4.

We can see that the range of the adhesion radius for the
attached stable prolate vesicle is quite wide 0 < R < 0.8. For
sufficiently large R, the vesicle is composed of two parts
connected by a small neck. One part attached to the surface
has an oblate shape, and the second part forms a prolate-shape
bud. It is interesting to note that for the same values of the
adhesion radius, two different configurations of vesicles
composed of two parts connected by a small neck can exist.

In the first configuration, this bud has a spherical shape (Figure
4a), and in the second configuration, this bud has a prolate
shape (Figure 4b). The configuration with the spherical bud is
more stable for larger values of the adhesion radius, and the
configuration with the prolate bud is stable for smaller values
of the adhesion radius, as shown in the plot of the elastic
energy in Figure 4d. There is a value of the adhesion radius R,
at which these two configurations with buds have the same
elastic energy. It might indicate the possibility of an easy
transformation from one configuration to the other. Similarly,
at larger value of the adhesion radius, the oblate vesicle (Figure
4c) and the oblate vesicles with a bud (Figure 4a) have the
same energy. We can also notice that the spherical bud changes
its shape with the increasing adhesion radius R. The bud gets
smaller and smaller until it disappears approximately at R =
1.12. For the largest values of R, the only stable configurations
are adhered vesicles with the oblate shape (Figure 4c). There is
a range of values of the adhesion radius where the stable
solutions for all three configurations of adhered vesicles are
obtained, as shown in Figure 4d.
In the calculations for v = 0.545, we have shown that the

increasing adhesion radius R causes the decrease in the size of
the spherical bead for the vesicles composed of two parts
connected by a small neck. Here, we would like to examine the
shape transformations when we start with the free vesicle
composed of two equal spherical beads separated by a small
neck. Such free vesicles are obtained for the reduced volume v
= 0.705 and the spontaneous curvature C0 = 3.0. In Figure 5,
we present possible transformations of a symmetric prolate and
oblate vesicle for v = 0.705 and C0 = 3.0. We can see that also
in this case, when the adhesion radius R is increasing, the bead
that is not attached to the surface stays spherical and gets
smaller. The bead that is attached to the surface becomes
oblate and gets larger. For sufficiently large R, the spherical
bead disappears, and the only stable solutions is the adhered
oblate vesicle.
We can see from the plot of the elastic energy (Figure 5c)

that the adhered prolate vesicles are stable for quite a wide
range of the adhesion radius 0 < R < 1.0. The adhered oblate
vesicles are obtained only for larger values of the adhesion
radius 0.55 < R < 1.2.
In the case of pear-shaped adhered vesicles, we have

observed so far that the configurations with a larger spherical
part attached to the flat surface have wider range of stability. In
Figure 6, we present the vesicle shapes for the reduced volume
v = 0.89 and the spontaneous curvature C0 = 3.0. It is quite
surprising that for such choice of parameters, the config-
urations with the smaller sphere attached to the surface (Figure
6a) have wider range of stability than the configurations with
the larger bead attached to the surface (Figure 6b) in the case
of pear-shaped vesicles. The latter solutions are stable only up
to R = 0.02. For larger R, adhered prolate vesicles become
metastable up to R = 0.68 (Figure 6c).
The adhered oblate vesicles are stable for the full range of

the adhesion radius R, as shown in the plot of the elastic energy
in Figure 6e.

■ CONCLUSIONS
We have studied the behavior of the vesicles adhered to a flat
surface within the framework of the spontaneous curvature
model. The calculations were performed for a few values of the
spontaneous curvature and the reduced volume. We have
identified the stability range of different branches of solutions

Figure 4. Shape profiles for the reduced volume v = 0.545 and
spontaneous curvature C0 = 3.0 and different values of the adhesion
radius R=r(Ls). (a) Oblate with a bead branch, (b) prolate branch, (c)
oblate branch. (d) Elastic energy, E/(8πκ), as a function of the
adhesion radius R=r(Ls), for different families of solution for the
reduced volume v = 0.545 and the spontaneous curvature C0 = 3.0.
The inset shows the values of the bending energy for small adhesion
radii.
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as a function of the adhesion radius. We have observed the
formation of new structures caused by the adhesion of a vesicle
to a flat surface. We have discovered that the adhesion of a
vesicle may cause the formation of a spherical or a prolate bud
connected by a small neck with the vesicle adhered to the flat
surface. Such shape transformation may lead to budding, which
may be important in biological processes. We have observed
that the width of the neck connecting the bud depends on the
size of the vesicle patch attached to the surface. Thus, it may be
possible to cause budding of the vesicles or biological cells with
the change of the adhesion potential. We have obtained in
many cases multiple solution with the same energy for the
same set of parameters. Such degeneracy may result in
interesting phenomena where the adhered vesicle can be
transformed from one state to another state of the same
energy. It also shows that the unique solution for an adhered
vesicle always exists.
The adhesion of a membrane surrounding biological cells is

a phenomenon that may be important in many biological
processes. Thus, it will be valuable to understand such
processes based on the studies performed within relatively
simple theoretical models of membranes. We have demon-
strated that adhesion may lead to many qualitatively different
shape transformations depending on the reduced volume and
the spontaneous curvature. We may speculate that such a

versatile behavior may be exploited in many biological
processes. We hope that the results presented here will help
understand the behavior of the biological systems observed in
experiments and will help design new experiments.
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Figure 5. Shape profiles for the reduced volume v = 0.705 and the
spontaneous curvature C0 = 3.0 and different values of the adhesion
radius R=r(Ls). (a) Prolate and (b) oblate branch. (c) Elastic energy,
E/(8πκ), as a function of the adhesion radius, R, for different families
of solution for the reduced volume v = 0.705 and the spontaneous
curvature C0 = 3.0. The inset shows the values of the bending energy
for small adhesion radii. Figure 6. Shape profiles for the reduced volume v = 0.89 and the

spontaneous curvature C0 = 3.0. The pear branch with the vesicle
attached to the surface with smaller (a) and larger (b) bead. The
prolate (c) and oblate (d) branch. (e) Elastic energy E/(8πκ) as a
function of the adhesion radius R=r(Ls), for different families of
solution for the reduced volume v = 0.89 and the spontaneous
curvature C0 = 3.0. The inset shows the values of the bending energy
for small adhesion radii.
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