## Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis

Neha Venkatesh Rangam <sup>1,\*,†</sup>, Alcina Johnson Sudagar <sup>1,\*,†</sup>, Artur Ruszczak <sup>1</sup>, Paweł Borowicz <sup>1</sup>, József Tóth <sup>2</sup>, László Kövér <sup>2</sup>, Dorota Michałowska <sup>3</sup>, Marek Łukasz Roszko <sup>3</sup>, Krzysztof R. Noworyta <sup>1</sup> and Beata Lesiak <sup>1</sup>

- <sup>1</sup> Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; aruszczak@ichf.edu.pl (A.R.); pborowicz@ichf.edu.pl (P.B.); knoworyta@ichf.edu.pl (K.R.N.); blesiak-orlowska@ichf.edu.pl (B.L.)
- <sup>2</sup> Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary; toth.jozsef@atomki.hu (J.T.); kover.laszlo@atomki.hu (L.K.)
- <sup>3</sup> Institute of Agriculture and Food Biotechnology—State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland; dorota.michalowska@ibprs.pl (D.M.); marek.roszko@ibprs.pl (M.Ł.R.)
- Correspondence: nrangam@ichf.edu.pl or nehavr25@gmail.com (N.V.R.); asudagar@ichf.edu.pl or sudagaralcinajohnson@gmail.com (A.J.S.)
- † These authors contributed equally to this work





Citation: Rangam, N.V.;

Sudagar, A.J.; Ruszczak, A.; Borowicz, P.; Tóth, J.; Kövér, L.; Michałowska, D.; Roszko, M.Ł.; Noworyta, K.R.; Lesiak, B. Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis. *Nanomaterials* **2022**, *12*, 442. https://doi.org/10.3390/ nano12030442

Academic Editor(s): Francisco Alonso

Received: 24 November 2021 Accepted: 26 January 2022 Published: 28 January 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).



Figure S1b. Elemental mapping of BW9Ag3 nanocomposite.



Figure S1c. Elemental mapping of BAg1 nanocomposite.



Figure S1d. Elemental mapping of BAg3 nanocomposite.



**Figure S2.** The XPS survey spectra of BW9 and B nanocomposites synthesized at different temperatures and times.

![](_page_4_Figure_0.jpeg)

**Figure S3a**. C to Ag weight ratio variation for BW9 and B nanocomposites with synthesis (a) temperature and (b) time at 80 °C.

![](_page_4_Figure_2.jpeg)

**Figure S3b**. C to O weight ratio variation for BW9 and B nanocomposites with synthesis (a) temperature and (b) time at 80 °C.

![](_page_4_Figure_4.jpeg)

**Figure S3c**. Ag to O weight ratio variation for BW9 and B nanocomposites with synthesis (a) temperature and (b) time at 80 °C.

![](_page_5_Figure_0.jpeg)

**Figure S4.** Elementary weight composition comparison resulting from EDXRF and XPS spectra of nanomaterials synthesized at different temperatures and times using (**a**,**c**) brewery waste BW9 and (**b**,**d**) product B.

![](_page_5_Figure_2.jpeg)

![](_page_6_Figure_0.jpeg)

**Figure S5a**. The Gaussian–Lorentzian asymmetric functions to different atomic chemical states fitted Ag 3d<sub>5/2-3/2</sub> XPS spectra recorded from BW9 and B nanocomposites synthesized at different temperatures and times.

![](_page_7_Figure_0.jpeg)

![](_page_8_Figure_0.jpeg)

**Figure S5b**. The Gaussian–Lorentzian asymmetric functions to different atomic chemical states fitted C 1s XPS spectra recorded from BW9 and B nanocomposites synthesized at different temperatures and times.

![](_page_8_Figure_2.jpeg)

![](_page_9_Figure_0.jpeg)

**Figure S5c.** The Gaussian–Lorentzian asymmetric functions to different atomic chemical states fitted O 1s XPS spectra recorded from BW9 and B nanocomposites synthesized at different temper-atures and times.

![](_page_10_Figure_0.jpeg)

**Figure S6.** Weight and normalized phase content comparison resulting from XRD and XPS spectra, respectively, in nanocomposites synthesized at different temperatures and times using (a,c) brewery waste BW9 and (b,d) product B.

![](_page_11_Figure_0.jpeg)

**Figure S7.** a. QUASES-Analyze software and Buried Layer (BL) model analysis of Ag 3d<sub>5/2/3-2</sub> spectra for BW9 nanomaterials at different synthesis temperatures and times at 80 °C.

![](_page_12_Figure_0.jpeg)

**Figure S7. b.** QUASES-Analyze software and Buried Layer (BL) model analysis of Ag 3d<sub>5/2/3-2</sub> spectra for B nanomaterials at different synthesis temperatures and times at 80 °C.