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A B S T R A C T

There is a growing interest in the properties of ionic liquids (ILs) and IL-solvent mixtures at metallic interfaces,
particularly due to their applications in energy storage. The main focus so far has been on electrical double
layers with ILs far from phase transitions. However, systems in the vicinity of their phase transformations
are known to exhibit some remarkable features, such as wetting transitions and capillary condensation.
Herein, we develop a mean-field model suitable for the IL-solvent mixtures close to demixing, and combine
it with the Carnahan-Starling (CS) and lattice-gas expressions for the excluded volume interactions. This
model is then solved analytically, using perturbation expansion, and numerically. We demonstrate that,
besides the well-known camel and bell-shaped capacitances, there is a bird-shaped capacitance, having
three peaks as a function of voltage, which emerge due to the proximity to demixing. In addition, we
find that the camel-shaped capacitance, which is a signature of dilute electrolytes, can appear at high IL
densities for ionophobic electrodes. We also discuss the differences and implications arising from the CS
and lattice-gas expressions for excluded volume interactions in the context of our model.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ionic liquids (ILs) and IL–solvent mixtures have become the focus
of research in electrochemistry due to their unique properties, such
as exceptional electrochemical and thermal stability, and low vapour
pressure. This makes them attractive materials for many applica-
tions [1, 2], for instance, for electrochemical reactions, as lubricants
for micro and nanodevices [3], as extraction liquids for the purifi-
cation of metals, colloids and biomass, etc. [2]. The classical theory
of electrolytes was developed in the early 20th century, with the
achievements of Gouy, Chapman, Debye, Hückel and Langmuir chan-
neled into the so-called Poisson-Boltzmann (PB) model [4]. The PB
model is a mean-field model which describes ions as isolated point-
like charges in a solvent considered as a continuum dielectric [5].
Electrical double layers (EDLs) emerge when electrolytes are put in
contact with charged surfaces. An EDL results from the formation of an
ion ‘cloud’ of opposite sign to that of the surface charge, and its width
is influenced by the competition between the thermal motion of the
ions, which tends to homogenize their distribution, and the Coulomb
interactions, which attract the counterions to the surface [5]. Within
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the linearized PB (Debye–Hückel approximation), the thickness of
this layer is given by the Debye length kD = (4pqbkB)−1/2, where
qb is the ion density and kB the Bjerrum length. The application of
the PB model to EDLs, known as the Gouy–Chapman model, predicts
the well-known U-shaped dependence of the EDL capacitance on the
applied potential.

However, the classical description of EDLs is only valid for dilute
electrolytes (concentrations below 0.01 M), but it is not suitable for
ILs due to typically high concentrations of ions, at which the ion
sizes start to play a role [6–9]. Indeed, theories developed for EDLs
have shown that excluded volume interactions are crucial to describe
the structure of the EDL with ILs properly [10–20]. Steric interac-
tions restrict the absorption of counterions at an electrode, and hence
influence the charge density in the EDL. This leads to the emergence
of the so-called camel and bell-shape capacitances, obtained at low
and high IL concentrations, respectively [16], instead of the classical
Gouy-Chapman’s U-shape.

Temperature also plays an important role in the structure and
capacitance of EDLs. However, contradictory results have been
reported in the literature and consensus is yet to be reached as to
whether capacitance increases or decreases with temperature and
under which conditions. According to the Gouy-Chapman theory, the
capacitance decreases for increasing temperature, but the experi-
ments showed also the opposite trends [21–24]. For instance, Silva
et al. [22] studied the [BMIM][PF6] ionic liquid at three different
electrodes and found that the differential capacitance increases with
temperature at all potentials. Lockett et al. [21] found the same
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behaviour for imidazolium-based ionic liquids in contact with glassy
carbon electrodes. More careful theoretical work suggested that both
trends are possible [25–27], but there is no general agreement on the
origin of this behaviour. For instance, Holovko et al. [25] proposed
that the increase of capacitance is related to the decreased inter-ionic
interactions and weaker ion associations, while Chen et al. [27] argued
that the temperature dependence of EDLs is chiefly determined by
the strength and extent of van der Waals interactions. Interestingly, it
was shown that the transformation between the camel and bell-like
capacitances can be induced also by varying temperature [27, 28],
with the bell shape emerging at high temperatures due to breaking
of ‘ion pairs’ and consequently stronger screening [27].

The focus of the above-mentioned studies was on room–
temperature ILs and IL–solvent mixtures far from phase transitions.
However, it is well–known that, for neutral fluids, the fluid structure
at a surface may undergo drastic changes (such as wetting or prewet-
ting transitions, layering, etc), when the system approaches a phase
transition [29]. In a recent work [30], we have proposed a model suit-
able for IL–solvent mixtures close to demixing. Treating solvent as a
continuum (appropriate for small solvent molecules, such as water
or acetonitrile), but describing ILs as amenable to phase separate into
the ion-rich and ion-dilute phases, we showed that the capacitance
and stored energy become sensitive functions of temperature in the
vicinity of demixing. We also demonstrated the emergence of a new,
bird-shaped capacitance, having three peaks as a function of volt-
age. Herein, we present a more detailed investigation of this system,
while we also extend our study to systems, in which solvent and ions
are of comparable size. We first describe the details and the deriva-
tion of the model (Section 2), and discuss its phase behaviour in
bulk (Section 3). Then, we derive analytic expressions for the density,
potential and charge profiles, as well as for the capacitance, by apply-
ing the perturbation expansion (Section 4). The results of numerical
calculations are discussed in Section 5. We summarize in Section 6.

2. Model

We consider a mixture of ionic liquid (IL) and neutral solvent,
which can phase separate below its upper critical point [31]. Our
interest is in the one-phase region just above demixing. We assume
that the mixture is in contact with a planar metallic electrode, and
the electrostatic potential, U, is kept constant with respect to the
bulk. This system can be described by the following grand thermo-
dynamic potential

Y[q±, u]/A = yel + yvdW − Ts − li

∫ ∞

0
dzqi(z), (1)

where yel, yvdW and S are the electrostatic energy, the energy asso-
ciated with van der Waals-like dispersion (non-Coulombic) inter-
actions and the entropy (all per surface area), respectively; T is
temperature, A is the surface area of the electrode, l i is the chemi-
cal potential, and qi(z) is the local density of different components,
where i = {+, −, s} denotes cations, anions and solvent, respectively.
The electrostatic energy is given by [10, 32]

b yel[c(z), u(z)] =
∫ ∞

0
dz

[
cu − 1

8pkB

(
∂u
∂z

)2
]

, (2)

where b = 1/(kBT), u is the electrostatic potential in kBT/e units
with kB denoting the Boltzmann constant; c = q+ − q− is the charge
density per elementary charge e and kB = be2/4 is the Bjerrum
length, where 4 is the dielectric constant. It is well known that
4 depends on temperature, particularly for polar solvents [33–35].
Nevertheless, we assume 4 to be temperature-independent, and note

that its temperature variation should not affect the results qualita-
tively, as pointed out in [30]. In addition, it is known that polar-
izability of solvent and of ions may play an important role in the
structure and properties of electrical double layers [36–41]. In par-
ticular, Gongadze and Iglič [36] demonstrated a potentially strong
variation of the dielectric constant close to a planar charged surface.
These authors derived a formula for a position-dependent 4, by tak-
ing into account excluded volume effects and solvent polarization.
In general, such variation of 4 shall also depend on the affinity of
ions/solvent towards electrode (electrode’s ionophilicity, see below),
as well as on the applied potential. To avoid such complications, and
to capture generic effects, unobscured by the chemical complexity,
we have decided to take a position-independent dielectric constant,
as in the majority of studies [10, 11, 13, 14, 16, 20, 27, 42–44]; clearly,
the change of 4 close to the surface will affect the results quantita-
tively, but it is reasonable to expect that the qualitative behaviour
will not be altered.

The term yvdW describes the contribution from attractive non-
Coulombic van der Waals-like interactions to the internal energy,
which may lead to demixing of the IL and solvent. The explicit
expression for yvdW is difficult to obtain due to the complexity of the
interactions between the ions and solvent. However, when the phase
separation is driven by the chemical difference between IL and neu-
tral solvent, we can take into account only the effective interactions
leading to phase separation. In this case, for the bulk system one can
write

yvdW−
∑

i

li

∫
drqi(r) =

1
2

∫
dr1

∫
dr2J(r)g(r)q(r1)q(r2)−l

∫
drq(r),

(3)

where l is the difference between the chemical potentials of an IL
and solvent, J(r) represents the effective interactions leading to phase
separation, g(r) is the pair distribution function, r = |r1 − r2|, and
q(r) = q+(r) + q−(r) is the number density of the IL at position r.
We have used the approach of Ref. [45, 46] to transform Eq. (3) to

[
yvdW −

∑
i

li

∫
drqi(r)

]
/A ≈K

{∫ ∞

0
dz

[
n2

0
2

(
∂q

∂z

)2

− 1
2
q2

]

+
n0

2
q2(0) − h1q(0)

}
− l

∫ ∞

0
dzq, (4)

where

K = −
∫

drJ(r)g(r) > 0 (5)

measures the strength of the dispersion interactions, and

n2
0 =

1
2

∫
drJ(r)g(r)r2∫
drJ(r)g(r)

(6)

describes the spatial extension of these interactions (n0 is of the
same order of magnitude as the molecular size a). In Eq. (4), we took
into account that the interactions with the missing fluid neighbours
beyond the system boundary should be subtracted (the first bound-
ary term), and we included the direct short-range interactions of the
fluid particles with the wall (the second boundary term). The elec-
trode’s ionophilicity is denoted by h1 and describes the preference of
the electrode for ions or solvent; h1 > 0 means that the wall favours
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ions, and we assumed this preference to be the same for anions and
cations.

Within the local density approximation, the entropy is

−Ts = −T
∫ ∞

0
dzs([qi(z)]) = kBT

∫ ∞

0
dz

[
q+ ln(a3q+) + q− ln(a3q−) + bfex

]
.

(7)

The first two terms in Eq. (7) come from the entropy of mixing of
ions, and the last term is the excess free energy associated with the
excluded volume interactions. If the cations and anions are of com-
parable size, but the solvent molecules are much smaller, such that
the solvent can be treated as a structureless continuum, it seems rea-
sonable to use the Carnahan-Starling(CS) approximation [47] for the
excluded volume interactions between the ions only, i.e.,

bf CS
ex (q) = q

(
4g − 3g2

(1 − g)2
− 1

)
, (8)

where g = pqa3/6 is the packing fraction of ions. However, if both
ions and solvent are of comparable size, it might be more suitable to
use the popular lattice-gas expression

bf lg
ex(q) = (qtot − q) ln

[
a3(qtot − q)

]
, (9)

which arises from the solvent’s ideal-gas entropy, bfex =
qs ln a3qs, by assuming the local incompressibility conditions,
q+(r) +q−(r) +qs(r) =qtot (qtot = a−3 for the lattice-gas model)
Eq. (9) has been employed in a number of important studies, most
notably by Bikerman [6], Wicke and Eigen [7, 9], Borukhov et al. [10],
Kilic et al. [17] and Kornyshev [16].

In Eqs. (8) and (9), the cations and anions are assumed to be of
the same size, i.e., a− = a+ = a, whereas often a+ �= a− [48–50].
Gongadze and Iglič [48] proposed an improved mean-field model
of EDLs that accounts for such ion-size asymmetry, and found that
it leads to a pronounced decrease of the capacitance and to shape
asymmetry of the capacitance-voltage curves (with respect to the
potential of zero charge), which seems to be consistent with the
experimental observations [51, 52]. These results suggest that the
asymmetry in ion sizes may reduce the capacitance calculated in
this work, and will additionally bring asymmetry in the capacitance-
voltage dependence, but the qualitative behaviour due to proximity
to demixing shall be captured already by a model featuring the same
sizes of cations and anions.

Summing up, our final expression of the grand potential is [30]

b Y[q±, u]/A =
∫ ∞

0
dz

[
q+ ln(a3q+) + q− ln(a3q−) + bfex(q)

]

+
∫ ∞

0
dz

[
cu − 1

8pkB

(
∂u
∂z

)2
]

+ bK

{∫ ∞

0
dz

[
n2

0
2

(
∂q

∂z

)2

− 1
2
q2

]
+

n0

2
q2

0 − h1q0

}

− bl

∫ ∞

0
qdz. (10)

The equilibrium properties of the system are described by the
minimum of Y. Minimization with respect to u and c yields

k2
Du′′ = −c = (1 + 0/q̄b) tanh(u), (11)

where kD = (4pqbkB)−1/2 is the Debye screening length in bulk
electrolyte, qb is the equilibrium ion density (in bulk) and 0 =
q̄− q̄b (q̄b = a3qb). The boundary conditions are, naturally, u(∞) = 0

and u(0) = eU/kBT, where U is the potential applied at an electrode
with respect to bulk. Minimization with respect to q gives

n2
0 0′′ + 0 = T̄ [ln(1 + 0/q̄b) − ln(cosh(u)) + Dlex] , (12)

where Dlex = lex − lb
ex with lex = b∂ fex/∂q, lb

ex = lex(z =
∞), and T̄ = kBTa3/K is dimensionless temperature. The boundary
conditions are 0(∞) = 0 and n00

′(0) − 0(0) + h̃1 = 0, where
h̃1 = a3h1/n0 − q̄b. From the solution of Eqs. (11)– (12), the total
charge, Q, stored in an EDL is

Q = −e
∫ ∞

0
cdz =

4p
4

du
dz

∣∣∣∣
z=0

. (13)

An important quantity, which can be assessed experimentally, is the
differential capacitance:

C =
∂Q
∂U

. (14)

We have calculated these quantities both numerically and
analytically, and the results are discussed in Sections 4 and 5. First,
however, we briefly describe the bulk system, i.e., the system in the
absence of an electrode.

3. Bulk phase diagram

In the absence of an electrode, the thermodynamic potential per
volume V is given by

b Yb(qb)/V = −bKq2
b/2 + [qb ln(qb/2) + bfex(qb)] − lqb. (15)

The equilibrium condition, ∂Yb/∂qb = 0, leads to a non-linear
equation, which we solved numerically. Our analysis indicates that,
in some parameter region, there are two solutions, correspond-
ing to the IL-rich (qb = q1) and IL-poor (qb = q2) phases.
A first-order phase transition between these phases occurs when
Yb(q1) = Yb(q2). This is shown in Fig. 1 by solid lines for the CS and
lattice-gas models.

At the spinodal line, d2Yb/dq
2
b = 0, the homogeneous IL-solvent

mixture becomes unstable with respect to density fluctuations (this
corresponds to the diverging correlation length, cf. Eq. (20)). Within
our mean-field theory, the spinodal line is given by

T̄c(q̄b) = a−1(q̄b), (16)

where

a(q̄b) =

[
∂lex

∂ q̄

∣∣∣∣
q̄=q̄b

+ q̄−1
b

]
. (17)

The spinodals are shown by dashed lines in Fig. 1. The point on the
spinodal that satisfies dT̄c(q̄b)/dq̄b = 0 corresponds to a critical point
(solid circles in the same figure). For the CS and lattice-gas expres-
sions, we found for the critical points q̄c ≈ 0.25, T̄c ≈ 0.09 and
q̄c ≈ 0.5, T̄c ≈ 0.25, respectively.

We note that the obtained phase diagrams (Fig. 1) are in good
qualitative agreement with the experimental data (see, e.g., Refs.
[53–55]).

4. Approximate analytical solution

To study the behaviour of IL-solvent mixtures at metallic surfaces
within our model, one needs to solve Eqs. (11)– (12), which we
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Fig. 1. Bulk phase diagrams of ionic liquid (IL)-solvent mixtures. The solid lines represent the first order phase transition between the homogeneous and IL-solvent demixed
phases, and the dashed lines are the spinodal curves given by Eq. (16). The circles denote (upper) critical points. Temperature is expressed in terms of the critical temperature Tc .

have done numerically. However, before describing the results of
those calculations, it is useful to discuss approximate analytical solu-
tions, which can be obtained for weak surface potentials, U, and
ionophilicities, h̃1. To this end, we used the standard perturbation
analysis, i.e., we assumed u = u0 + eu1 + e2u2 + e3u3... and
0 = 00 + e01 + e202 + ..., where e is a small parameter. In the
first order approximation, we obtained the following equations:

d2u1

dz2
= k−2

D u1(z) (18)

and

d201

dz2
= n−201(z), (19)

where

n = n0

(
T̄

T̄c(q̄b)
− 1

)−1/2

(20)

is the correlation length and T̄c is given by Eq. (16). The solutions to
Eqs. (18) and (19) are

u1(z) = Ue−jz (21)

and

01(z) =
h̃1

n0/n + 1
e−z/n. (22)

Thus, as one may expect, in the first order approximation, the fields
u and 0 are fully decoupled, that is, the behaviour of u is determined
solely by the Debye screening length, kD, as in the classical Debye-
Hückel theory, while the decay of 0 is governed by the correlation
length, n.

In the second order perturbation, we obtained

d2u2

dz2
= k−2

D u2 +
k−2

D

q̄b
01u1 (23)

and

d202

dz2
= n−202 +

T̄

2 n2
0 q̄2

b

[
A(q̄b)02

1 − q̄2
bu2

1

]
, (24)

where

A(q̄b) = q̄2
b

∂2lex

∂ q̄2

∣∣∣∣∣
q̄=q̄b

− 1. (25)

Note that A(q̄b = q̄c) = 0, where q̄c is the critical density. Thus, in
the second order, the u and 0 fields become coupled, and it is this
coupling that determines the highly non-linear behaviour of the sys-
tem as it approaches demixing. The solutions to Eqs. (24) and (23)
are lengthy and are not presented here.

Fig. 2 compares the second–order analytical and numerical solu-
tions to Eqs. (11) and (12) for the Carnahan-Starling and lattice-gas
entropies.Fortheorderparameter,0, analyticandnumericalsolutions
differ significantly for increasing the applied potential. Interestingly,
however, for the charge density the perturbation expansion provides
a relatively good approximation and the solutions agree even for
higher potentials.

4.1. Differential capacitance

Differential capacitance can be computed by plugging the
electrostatic potential, u, obtained by the perturbation expansion,
into Eqs. (13) and (14); the result is

C = C0 + C2U2 + ..., (26)

where

C0 = CD

[
1 +

h̃1 n/kD

(1 + n0/n)(2n/kD + 1)
+ O(h̃2

1)

]
(27)

and

C2 =
CD

4

[
3(4n/kD + n/n0 + 1)

[
(n/n0)2 + 1

]
2(n/n0 + 1)(2n/kD + 1)2q̄b a(q̄b)

− 1

]
+ O(h̃1), (28)

where CD = (a/kD)CH is the Debye capacitance and CH = 4/4pa the
Helmholtz capacitance.
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Fig. 2. Density profiles for the Carnahan-Starling and lattice-gas entropies. The dashed and solid lines correspond to the analytical and numerical solutions, respectively.
The profiles were obtained at the applied potentials, U, as indicated on the plots, for ionophilicity h̃1 = a3h1/n0−q̄b = 0, and for n0 = kB = a. (a) Order parameter 0 = a3(q− qb)
for the Carnahan-Starling (CS) entropy, where q = q+ + q− is the total ion density. (b) Charge density c = a3(q+ − q−) for the CS approximation. (c) and (d) The same as
(a) and (b) but for the lattice-gas entropy. Voltage is expressed in terms of the thermal voltage VTc = kBTc/e taken at Tc .

The sign of C2 describes the shape of the capacitance at low
potentials. A positive C2 corresponds to the so-called camel shape,
exhibiting a minimum at u = 0, while a negative C2 means a
maximum at u = 0 and is often associated with the bell-shaped
capacitance [16]. Such capacitance shapes have been extensively
studied in the literature [16, 20, 21, 27, 28, 42–44, 56, 57].

In the absence of dispersion interactions (K = 0 in Eq. (10)),
Eqs. (27) and (28) reduce to C0 = CD and

C2 =
CD

4

(
3

2q̄b a(q̄b)
− 1

)
, (29)

respectively. For K = 0, therefore, the sign of C2, and thus the
capacitance shape, depend only on the IL density.

For the lattice-gas model, combining Eqs. (9) and (29) gives

C2 =
CD

4
(1 − 3q̄b) , (30)

which changes sign at q̄lg
b = 1/3, implying a transformation between

the bell and camel shapes at q̄
lg
b , as first pointed out by Korny-

shev [16]. For the CS free energy, Eq. (8), we obtained (for K = 0)

C2 =
CD

4

[
3(1 − gb)4

2(1 + 4gb + 4g2
b − 4g3

b + g4
b)

− 1

]
. (31)

We have solved equation C2 = 0 numerically and obtained for the
transition between the camel and bell shapes q̄CS

b ≈ 0.098. Note that
this value is significantly lower than q̄

lg
b = 1/3 predicted by the

lattice-gas model. This is similar to the critical density, which is also
higher for the lattice-gas model (Fig. 1).

Considering dispersion interactions (K �= 0), Eq. (28) becomes
more complex and we solved it numerically using bvp4c routine in
MATLAB®2017a software. Fig. 3a, c shows the resulting diagrams,
which separate the regions of positive and negative curvatures in
the low voltage capacitance. The examples of the capacitance shapes
are presented in Fig. 3b, d. This figure also demonstrates that our
approximate solutions are valid only in the vicinity of u = 0, and
hence the full numerical solution is needed to describe properly the
capacitance behaviour.

5. Numerical results

We have solved Eqs. (11) and (12) numerically to analyze the
capacitive properties of our system in a wide range of voltages,
temperatures and densities. In order to calculate the differential
capacitance, we first computed the accumulated charge Q according
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Fig. 3. Capacitance close to demixing from perturbation expansion. (a) Capacitance diagram showing the region of positive and negative curvature in the low-voltage capacitance
(C2 > 0 and C2 < 0, respectively, see Eq. (28)) for the Carnahan-Starling (CS) model (Eq. (8)). (b) Example of capacitance in the low-voltage region for the CS model. Voltage
is expressed in terms of the thermal voltage VTc = kB Tc/e taken at Tc , and the capacitance is measured in units of the Helmholtz capacitance CH = 4/4pa, where a is the ion
diameter. Dashed lines show the analytical approximation and the solid lines were obtained by solving Eqs. (11)–(12) numerically (see Section 5). (c)–(d) The same as (a)-(b) but
for the lattice-gas model (Eq. (9)). In all plots, the ionophilicity h̃1 = a3h1/n0 − q̄b = 0.

to Eq. (13), and then differentiated it numerically with respect to the
electrostatic potential (Eq. (14)).

5.1. Differential capacitance

Fig. 4a shows that, for the CS model, there are three capacitance
shapes [30]: camel (C2 > 0), and bird and bell shapes (C2 < 0,
compare Fig. 3a, b). The lattice-gas model also predicts all three
capacitance shapes (Fig. 4d). This is interesting since recently Chen
et al. [27] extended the steric-only lattice-gas model (i.e, K = 0 in
Eq. (10)) to account for the temperature dependence and studied the
capacitance in a wide range of temperature, but they did not observe
the bird-like capacitance.

Fig. 4b, e presents the capacitance diagrams for the temperatures
above the critical temperature Tc (i.e., IL–solvent is always in the
mixed state). It shows the regions of the camel, bird and bell-shaped
capacitances for the CS and lattice-gas models. Both models exhibit
the diagrams of similar topology. For the lattice-gas model, how-
ever, the transformations between the various capacitance shapes
are shifted to higher densities. This is consistent with the K = 0
result (Fig. 3), and is in similarity to the bulk phase diagram, in which
the demixing region is also shifted to higher densities (Fig. 1b).

Fig. 4c, f shows the capacitance diagrams for the temperature
below Tc. Interestingly, the CS model predicts the camel shape even
for high densities, but only provided the electrode is strongly iono-
phobic. This is likely because, close to demixing, an ionophobic

electrode can induce a (macroscopically) thick layer of an ion-poor (or
solvent-rich) phase, so that the system in the vicinity of the electrode
behaves as being effectively dilute; note that for higher temperatures
(far from demixing), only the bell shape is observed for dense ILs
(Fig. 4b). It is also interesting to note that the bell and camel shapes
are separated by a narrow domain of bird-like capacitance. For the
lattice-gas model, however, there is no camel shape at high densi-
ties, where only the birds and bells are observed. It must be noted
that our theory is inaccurate at high densities, where steric repul-
sions start to play the dominant role. In view of the above results,
it will be interesting to study this region by more robust theories or
by simulations.

5.2. Energy storage

From the capacitance, we have calculated the energy density
stored in an EDL as a function of the applied potential

E(U) =
∫ U

0
C(u)udu. (32)

The stored energy, together with the examples of the capacitance and
charging parameter, are shown in Fig. 5. The charging parameter is
[58, 59]
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Fig. 4. Capacitance behaviour close to demixing. (a) Differential capacitance for the Carnahan-Starling (CS) entropy (Eq. (8)) as a function of applied potential for constant
temperature and for a few ion concentrations, demonstrating the camel, bird, and bell-shaped capacitances. Voltage is expressed in terms of the thermal voltage VTc = kBTc/e
taken at Tc , and the capacitance is measured in units of the Helmholtz capacitance CH = 4/4pa, where a is the ion diameter. (b) Capacitance diagram for the CS model showing
the regions of camel, bird, and bell-like capacitances at constant temperature (T/Tc = 1.2, where Tc denotes the critical point). The dashed horizontal line denotes the value of
h̄1 = a3h1/n0 and the symbols mark the bulk densities qb used in (a). (c) Capacitance diagram for the CS entropy for temperature below Tc , T/Tc = 0.9. The white region denotes
the domain of the IL-solvent demixing (Fig. 1). (d)–(f) The same as (a)–(c) but for the lattice-gas entropy.

XD =
e

C(U)
dC
dU

, (33)

where C =
∫ ∞

0 0(z)dz is the surface coverage by ionic liquid.
Fig. 5a shows the energy obtained for two temperatures for the

CS entropy. In the entire range of voltages studied, the energy is
higher for the lower temperature (closer to demixing). As suggested
in [30], this temperature dependence of the stored energy can be
used to generate electricity from waste heat [60–64]. The increase
of energy with decrease of temperature can be related to the capaci-
tance behaviour. Close to demixing, capacitance increases due to the
voltage-induced increase of ion density at the surface, so that the
bell-shaped capacitance acquires wings and becomes bird-shaped
(Fig. 5b). This is manifested in the behaviour of the charging param-
eter, which becomes greater than unity for the temperature close to
demixing (Fig. 5c); thus, both cations and anions are adsorbed into
the surface layer, leading to a strong peak in the charging parameter
and capacitance. For higher voltages, however, the charging param-
eter decreases to XD ≈ 1 and the capacitance also decreases in this
range of voltages.

For the lattice-gas entropy, the temperature dependence of the
stored energy is weaker, as compared to the CS model (Fig. 5d). More-
over, the two curves cross each other at higher voltages, and the
stored energy becomes higher for higher temperatures. Qualitatively,
however, the differential capacitance (Fig. 5e) and the charging
parameter (Fig. 5f) exhibit similar behaviours as for the CS model.

6. Summary

We have studied electrical double layers with ionic liquid–solvent
mixtures close to demixing (Fig. 1). We proposed a model, Eq. (10),
appropriate for this system, and considered the Carnahan-Starling
(CS) and lattice-gas expressions for the excess free energy associated
with the excluded volume interactions. This model was treated both
analytically and numerically, and the results can be summarized as
follows.

1. Analytic expressions were obtained by using perturbation
expansion, which provide good agreement with the numerical
results for the charge density at low potentials (Fig. 2).
We also determined the capacitance shapes (at low poten-
tials) and calculated analytically the capacitance diagrams,
showing the regions of positive (camel-shaped) and negative
curvatures. The transformation between these shapes can be
induced by changing the ion density and temperature (Fig. 3).

2. Our numerical calculations revealed the emergence of a bird-
shaped capacitance, having three peaks as a function of voltage.
We also calculated the capacitance diagrams, this time show-
ing the regions with the camel, bird and bell shapes, obtained
by changing the electrode’s ionophilicity and bulk ion density
at different fixed temperatures (Fig. 4).

3. Interestingly, for the Carnahan-Starling free energy (here appli-
cable for small solvent molecules), the camel-shaped capaci-
tance, which is a signature of dilute electrolytes, can appear at
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Fig. 5. Energy storage and charging close to demixing. (a) Stored energy per surface area for the Carnahan-Starling (CS) entropy as a function of voltage at constant ion density
and electrode’s ionophilicity, and for two temperatures. Energy density is measured in units of ET = kBT/a2 taken at Tc , and voltage is expressed in terms of the thermal voltage
VTc = kBTc/e taken at Tc . (b) Differential capacitance and (c) charging parameter XD for the same temperatures as in (a). Capacitance is measured in units of the Helmholtz
capacitance CH = 4/4pa, where a is the ion diameter. (d)–(f) The same as (a)–(c) but for the lattice-gas entropy.

high densities in the case of ionophobic electrodes; the model
with the lattice-gas entropy does not exhibit the camel-like
capacitance in the high density regime, however.

4. We calculated the energy stored in an EDL at different tem-
peratures (Fig. 5a,d). For the CS entropy, the energy increases
when approaching demixing, which can be used to generated
electricity from heat [30, 60–64]. For the lattice-gas model,
however, there seems to be no energy enhancement when
approaching demixing. This suggests that the type of solvent
(particularly the size of solvent molecules) may play an impor-
tant role in the energy storage. It will be interesting to study
such solvent-dependent effects in more details in future work.

5. We also found that a transformation between the bell and bird
shapes can be caused by varying temperature (Fig. 5b,e). This is
due to a voltage-induced adsorption of an IL at an electrode, as
manifested by the charging parameter XD, which shows a strong
peak at a non-zero voltage. Such an enhanced electrosorption
leads to stronger screening and hence to the appearance of
wings in the bell-shaped capacitance, giving rise to the bird
shape.

We presented here a simple model, and to keep it simple, we had
to make a number of simplifying assumptions, in order to be able
to develop some analytical insights. In particular, we assumed the
cations and anions to be of the same size; we took the dielectric con-
stant temperature and position-independent; and, most importantly,
we treated the hard-core interactions on the level of the local-density
approximation. While it is clear that more realistic models, or sim-
ulations, will alter the results of our calculations quantitatively, it

is reasonable to expect that the qualitative behaviour is captured
by our model (particularly points 2 and 5 above). Thus, our model
provides the basis for further studies of electrical double layers in
the vicinity of ionic liquid–solvent demixing. It will be interesting
to validate our predictions by more rigorous theories, simulations
and experiments, especially those obtained at high ion concentra-
tions (e.g. point 3 above), at which the local density approximation
is known to be inaccurate [12].

Finally, we note that Alam et al. [65] have observed experimentally
the appearance of humps at the potential of zero charge in the U-
shaped capacitance for N2-saturated room-temperature ILs on some
electrodes; the emergence of wings in the bell-shaped capacitance
was reported in a simulation study by Sha et al. [66] for neat BMIM-
PF6 on a gold surface. Our analysis suggests that these behaviours
may be related to the wetting properties of ionic liquids. It will be
useful to study such relations more systematically, in order to link
explicitly the wetting and electrochemical characteristics of ionic
liquid-electrode systems.
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