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Summary Schizophrenia is the most common form of psychotic behaviour where patients experiences hallucination, 

dillusion or chaotic speech. Schizophrenia is difficult to detect and easily go undetected for years. Here we propose 

the idea of detecting schizophrenia by a network of interacting chemical oscillators. We optimized a classifier based 

on six interacting oscillator using genetic algorithm and obtained 82% accuracy of schizophrenia detection on a 

selected  training dataset. 
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1. Introduction 

     The modern information processing has been 

dominated  by semiconductor technology and the binary 

information coding in electric potentials. Semiconductor 

logic gates are reliable, fast and inexpensive. Moreover,  

they can be concatenated into large structures. As the 

result the bottom-up approach is used to make more 

complex information processing devices as a 

combination of the simple ones  [1].  

 

     Living organisms use chemistry for information 

processing. Experiments with man-made chemical 

information procesing media shows that the maximum  

processing power can be achieved if  different parts of 

the medium process information in parallel [2]. It can be 

expected  that the top-down design strategy is more 

appropiate to reveal the computing power of a chemical 

medium than the bottom-up approach. The results 

presented below are continuation of the previous studies 

on top-down design of chemistry based clasifiers [3,4,5]. 

We consider a chemical system that works as a  classifier 

of a selected  dataset containing records in a form of 

(n+1) tuples, where the first n elements are predictors and 

the last one is a discrete data type. Our computing 

medium is supposed to return the correct data type if the 

predictor values are used as the input. Problems of such 

structure are common in medical applications [4], where 

one is supposed to determine if a patient is healthy or not 

(data type) on the basis of medical tests performed (the 

predictor values). 

 

     In our approach a computing medium made of 

interacting  chemical oscillators is studied in-silico. The 

numerical model of a chemical oscillator is inspired  by 

the two-variable Oregonator model [6,7] of the 

Belousov-Zhabotinsky(B-Z) reaction[8]. This reaction is 

probably the most studied chemical process where the 

nonlinear phenomena, like oscillations, excitability, 

wave propagation or chaotic behavior, are clearly 

manifested [9]. The interest in BZ-reaction as a medium 

for chemical information processing has been motivated 

by the fact that its properties are similar to that observed 

for the nerve system [2,10]. One can form channels in 

which propagation of concentration pulses is observed. 

These pulses interact (annihilate) one with another and 

can change their frequency on the junctions between 

channels [11]. The output information is usually coded in 

the presence of excitation (a high concentration of a 

selected reagent)  at a given point of the medium and at 

the specific time.  

 

     For a specific choice of the catalyst  BZ-reaction 

becomes  photosensitive and it can be inhibited by 

illumination [12,13,14]. If  a hight intensity illumination 

is applied to an oscillatory medium then excitations are 

rapidly damped and the system reaches a stable, steady 

state. On the other hand, the oscillatory behaviour re-

appears immediately after the illumination is switched 

off  [15]. The existence of such external inhibiting factor 

is very important for information processing applications 

because it allows to control the medium evolution by 

inhibiting its selected parts. Morover, we can input 

digital information into the computing medium by 

inhibiting specific reactions  for times functionally 

related to the input value. 

 

     Our recent results suggest that reasonably accurate 

database classifiers can be constructed with a network of 

interacting chemical oscillators [3,4,5], like the one 

illustrated in Fig. 1(b). The output information is 

extracted from the network evolution, for example from 

the number of concentrartion maxima observed within a 
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fixed time interval.  The network is made of  two types 

of ocillators. There are input oscillators that are used to 

input predictor values. Oscillators assigned as inputs of 

predictor #l are inhibited for time related to this predictor 

value. There are also so called ”normal oscillators”, that 

are inhibited for a fixed time that is not related to the 

predictor value. These normal oscillators  are supposed 

to moderate interactions in the medium and optimize 

them for a specific problem. In order to find a classifier 

for a given problem we need to specify the number of 

oscillators and their interactions.  Also,  such parameters 

as loactions of input and normal droplets, inhibition of 

normal droplets, method for inputing the predictor values 

or the type of interactions between droplets have to be 

optimized. To do it we can use the top-down strategy 

[3,4,5]: First  we specify the function that should be 

performed by the considered system. Next, we search for 

possible factors that can modify the system evolution and 

increase its information processing ability. Finally we 

combine all these factors and apply them to achieve the 

optimum performance.  We have found [3,4,5] that 

evolutionary optimization oriented on obtaining the best 

classifier for a representative training dataset of the 

problem can lead to the desired computing  medium.  

 

     In this report we concentrate on design of a  clasifier 

that is supposed to determine if a patient has 

schizophrenia or not. Schizophrenia is the most common 

form of psychotic behavior where patients experiences 

hallucination, delusion, chaotic speech. However, 

schizophrenia is difficult to detect and easily go 

undetected for years. We postulate that the  detection of 

schizophrenia can be done by a network of interacting 

chemical oscillators that process information extracted 

from brain activity of a patient. There are two aspects of 

using the concepts of Artificial Intelligence  in the 

presented study. First the network parameters are 

optimized using an evolutionary algorithm without a 

human involvement. Second, the resulting network can 

be seen as an example of Artificial Intelligence, that can 

predict if a patient is ill or not. 

 

 

2. Results 
 

     We postulate that information necessary to detect  

schizophrenia can be extracted from the EEG signals 

recording brain activity [16]. Signals (the time dependent 

potential values) were recorded from electrodes placed in 

different parts of the scalp (see Fig. 1(a)).  For the 

analysis we used signals received from F7 and F8 

channels marked red in Fig.1(a). The signal dataset 

available on the web [17] containing signals recorded on 

84 patients, out of which 45 were schizophrenic and 39 

were healthy controls, was used as our training dataset.  

 

     The time dependent potentials were time averaged 

over 60 second interval and next standardized in the 

following way:  

 

 𝑝7,𝑚 =
𝑥7,𝑚

1 − 𝜇7

𝜎7

                 𝑝8,𝑚 =
𝑥8,𝑚

2 − 𝜇8

𝜎8

 

 

Here the index m (0<m<85) numbers patients in the 

considered database. The values x7,m and x8,m are the 

averaged potentials from F7 and F8 channels, µ7 and µ8 

are the mean values of x7,mand x8,maveraged over all 

patients and σ7 and σ8 are the standard deviations of x7,m 

and x8,m.  A record of the considered training database 

has a form of 3-tuple: (p7,m, p8,m, z) where the record type 

z = 0 for schizophrenic patients and z = 1 for healthy 

ones. 

 

We assumed that a classifier that can distinguish 

between schizophrenic and healthy subject was formed 

of just 6 oscillators arranged in geometry shown in Fig 1 

(b). The broken arrows illustrate interactions between the 

oscillators. Following the analogy with Belousov 

Zhabotinsky reaction as a computing medium we used 

the same two-variable Oregonator model [6,7] to 

simulate the time evolution of each oscillator: 

 
𝜕𝑢

𝜕𝑡
=

1

𝜀
(𝑢 − 𝑢2 − (fv + 𝜑(𝑡))

𝑢−𝑞

𝑢+𝑞
)              1(a) 

 
𝜕𝑣

𝜕𝑡
= 𝑢 − 𝑣                                                        1(b) 

     

where: u and v denote concentrations of activator U and 

inhibitor V of Belousov-Zhabotinsky reaction 

respectively. In our simulations we used the following 

values of model parameters: q=0.0002, ε=0.2,  f=1.1. 

The parameters of the Oregonator model were fixed and 

did not undergo optimization. In the Equation 1(a) the 

function φ(t) represents time dependent illumination of 

the medium. We used illumination to control the time 

evolution of an oscillator and considered φ(t) in the form: 

 

𝜑𝑘(𝑡) = 0.1 ∗ (1.001 + tanh(−10 ∗ (𝑡 − 𝑡osc(𝑘)))) 
                  (2) 

          

where: tosc(k) is the time when illumination of oscillator 

#k was terminated. At the beginning the value of  φk(t=0) 

= 0.2 and the Oregonator model predicts a stable steady 

state corresponding to u =0.0002 and v=0.0002. For long 

times φk(t) goes to 0.0001 what correspond to an 

oscillator with the period of approximately 10.8 time 

units. In an oscillator #k is a normal one than the value 

of tosc (k) is the same for all processed records of the 

training dataset. If the oscillator #j functions as the input 

of the predictor pl (l = 7 or 8) than: 

 

𝑡osc(𝑗) = 𝑡start + (𝑡end − 𝑡start) ∗ 𝑝𝑙  

                 (3) 

                                                                                    

     The coupling between the oscillators #k and #j is 

described by additional reactions involving the activators 

Uk and Uj of these oscillators: 

 

Uk + Aj → products 
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with the reaction rateα and: 

Uj + Bj → Uk + Ck 

Uk + Bk → Uj + Cj 

with the reaction rate  β. 

      The time evolution of the network is described by the 

following kinetic equation: 

𝜕𝑢𝑗

𝜕𝑡
=

1

𝜀
(𝑢𝑗 − 𝑢𝑗

2 − (fv𝑗 + 𝜑(𝑡))
𝑢𝑗 − 𝑞

𝑢𝑗 + 𝑞
)

−(𝛼 + 𝛽 ∑ 𝑠𝑗,𝑘) + 𝛽(∑ 𝑠𝑗,𝑘𝑢𝑘)

6

𝑘=1

6

𝑘=1

 

                                                                                                4(a) 
 

𝜕𝑣𝑗

𝜕𝑡
= 𝑢𝑗 − 𝑣𝑗  

              4(b) 

where: uj and vj denote concentrations of activator and 

inhibitor in the oscillator #j. The last terms in Eq.4(a) 

represent the coupling between oscillators #j and #k. The 

values of symbols sj,k  are equal to 1 if oscillators #j and 

#k interact and sj,k = 0 if they do not.  

        In order to get information if a patient characterized 

by the predictors p7 and p8 is healthy or ill we simulated 

numerically Eqs.4(a,b) the network evolution within the 

time interval [0, tmax] using Cash-Karp R-K45 method 

[18] with Δt = 10-3 time steps. We postulate that 

information about patient’s health can be extracted from 

the number of activator maxima recorded on a selected 

oscillator of the network, during the time interval [0, 

tmax].  

      Following the idea of cancer classification described 

in[3] we optimized the system parameters to maximize 

the mutual information [19] between the number of 

oscillations received from the output droplet and the 

health of a patient represented by records of the training 

database. It can be expected that the value of mutual 

information increases with the classifier accuracy. An 

evolutionary algorithm covering all parameters of the 

network, i.e.: 

– the time during which network evolution is studied tmax 

( tmax < 100 time units), 

-- locations and illumination times (tosc (i)) for all normal 

oscillators, 

-- locations of input oscillators and times tend, tstart in the 

Eq.(3),  

-- the rate constants α,β describing interactions between 

oscillators, 

was applied. 

      The quality (fitness) of a specific classifier was 

calculated as the mutual information between the list of 

types in the training database and the list of numbers of 

activator maxima observed on the output droplet [3]. As 

the output droplet we select the one for which the mutual 

information was the maximum one. The network  

optimization was performed using an evolutionary 

optimization algorithm presented in [5]. We considered 

740 optimization generations over the population of 200 

classifiers. The progress of optimization is illustrated in 

Fig. 2(a). When the optimization was terminated the 

mutual information between the list of types in the 

training database and the number of activator maxima 

observed on the output droplet was 0.416.  The most fit 
network we obtained is illustrated in Fig. 2(c). The 
symbols In1 and In2 mark locations of inputs for 
predictors  p7  and p8   respectively. The normal 
oscillators  are represented by pie-charts. The ratio 
between the surface of the red area and the area of 
disk representing an oscillator represents the value of  
tosc(#)/ tmax . The optimized network is characterized 
by:  tmax=  79.5,  tstart =  72.1, tend =4.9, α = 0.46, β = 

0.65, tosc(1) = 52.3, tosc(5) =  52.3. 

Figure 2(b) illustrates the mutual information 
between the list of numbers of activator maxima 
observed on a specific oscillator and the list of types 
of the training database. As seen the highest values of 
mutual information are observed for oscillators that 
are also the inputs of predictor p8. The maximum 
mutual information is for the oscillator #2. It can be 

expected the classifier accuracy increases with the 

mutual information, thus using the number of maxima of 

the activator for the oscillator #2 we should obtain the 
most accurate diagnosis.  The number of cases 

corresponding to a given number of activator maxima 

observed on the oscillator #2 for healthy and  

schizophrenic patients is shown in Fig. 2(c). Using these 

results we can postulate the classification rule: if 1,3 or 4  

maxima of activator are observed during the time 

evolution on the oscillator #2 then the patient is  healthy.  

If the number of observed maxima is different then the 

patient is schizophrenic. This rule gives the accuracy of 

82% in determination of schizophrenic patients in the 

considered database. 

 

3. Conclusions and Discussions 

 

      In the presented study we assumed that schizophrenia 

can be detected by an Artificial Intelligence program that 

analyses EEG signals recorded from electrodes located 

on a patient scalp. Using a limited dataset we 

demonstrated that a interacting system of chemical 

oscillators can be trained to perform as a classifier and it 

has a potential to distinguish a schizophrenic patient. We 

considered a network of 6 coupled oscillators and 

optimize it to diagnoze correctly 82% of cases in the 

considered dataset.  We tested a number of combinations 

of two signals and, within the available data, the highest 
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accuracy was obtained for F7 and F8 channels (cf. Fig. 

1(a)). We think the result is promising and encourage 

future research in this field. Having access to much larger 

databases we could generalize the presented results. A 

larger network would allow to combine information from 

a large number of channels which should increase the 

diagnosis accuracy.  

 

4. Figures  
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Fig 1(a) The location of electrodes and  EEG signals used 

as inputs .(b) The schematic representation of the network of 

oscillators  used to determine a schizophrenic patient. 
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      Fig 2:  The optimization of a schizophrenia classifier. (a)  

The maximum mutual information between the list of record 

types and the list of numbers of activator maxima as a function 

of the evolutionary step. (b) The mutual information between 

the list of record types and the list of numbers of activator 

maxima measured for different oscillators of the optimized 

network. The oscillator #2 gave the maximum mutual 

information and it was selected as the output one. (c)The 

structure of optimized schizophrenia classifier. In1 and In2 

represent inputs for p7 and p8. The green ringed droplet 

represents the output droplet. (d) The numbers of cases in the 

considered training database for which a given number of 

activator maxima is observed on the oscillator #2.  
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