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How Does a Simple Network of
Chemical Oscillators See the
Japanese Flag?
Jerzy Gorecki* and Ashmita Bose

Department of Complex Systems and Chemical Processing of Information, Institute of Physical Chemistry, Polish Academy of

Sciences, Warsaw, Poland

Chemical computing is something we use every day (e.g., in the brain), but we can still

not explore and master its potential in human-made experiments. It is expected that the

maximum computational efficiency of a chemical medium can be achieved if information

is processed in parallel by different parts of the medium. In this paper, we use computer

simulations to explore the efficiency of chemical computing performed by a small network

of three coupled chemical oscillators. We optimize the network to recognize the white

and red regions of the Japanese flag. The input information is introduced as the inhibition

times of individual oscillators, and the output information is coded in the number of

activator maxima observed on a selected oscillator. We have used the Oregonator model

to simulate the network time evolution and the evolutionary optimization to find the best

network for the considered task. We have found that even a network of three interacting

oscillators can recognize the color of a randomly selected point with 95% accuracy.

Keywords: chemical oscillating reaction, Belousov-Zhabotinsky, Oregonator model, mutual information,

evolutionary optimization, network, chemical computation

1. INTRODUCTION

The success of semiconductor technology in machine information processing is the consequence of
a highly efficient realization of logic gates characterized by a long time of error-free operation. The
gates can be downsized to the nanoscale and concatenated to make more complex information
processing devices. The semiconductor technology perfectly matches the bottom-up design
scenario of information processing systems according to which more complex operations are
represented by the combination of simpler tasks for which constructions of corresponding circuits
have already been developed (Feynman et al., 2000).

The usefulness of logic gates and binary information coding demonstrated by semiconductor
devices has strongly influenced other fields of unconventional computation including the chemical
one (Adamatzky, 2018). Many studies have focused on strategies for the use of binary information
coding in a computing medium and on realization of the logic gates or binary operations (Hjelmfelt
et al., 1992; Adamatzky and De Lacy Costello, 2002; Magri et al., 2006; de Silva and Uchiyama,
2007; Gorecki et al., 2009). In some cases, molecular logic gates used as molecular probes offer
an interesting alternative to the standard techniques (McKinney et al., 2017). However, most
proposed chemical gates were much less efficient and were slower than the equivalent operations
performed using semiconductors. The fact that a medium allows us to generate all logic gate proofs
that the universal computation with this medium is theoretically possible. However, usually, the
gates made of a chemical computing medium have limited potential applications. In the case of
the Belousov-Zhabotinsky (BZ) reaction (Belousov, 1959; Zhabotinsky, 1964), the output signal
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appears a few seconds after the input is introduced (Toth and
Showalter, 1995; Steinbock et al., 1996). For other media, this
time can be longer. For example, for gates with information
coded in DNA molecules, it may take a few hours before the gate
answer is obtained (Lin et al., 2018). The bottom-up construction
of chemical information processing devices does not therefore
seem to lead to an efficient realization of algorithms.

On the other hand, living organisms use chemistry for
information processing and do so with significant efficiency
for various classes of algorithms, including sound and image
recognition, orientation in space, or navigation in crowded
environments. This observation demonstrates that a chemical
medium can be efficiently applied for specific computing
tasks and presumably solve them using a highly parallel
approach. Applications of parallel chemical computation have
been reported in the literature. The classic example is the
Adleman demonstration that the Hamiltonian path problem
can be solved with DNA molecules (Adleman, 1994; Calude,
2002). Another example is the so-called prairie-fire algorithm
for verification if there is a path linking two randomly selected
points in a labyrinth. This problem can be solved by a labyrinth
formed of an excitable medium where stable pulses of excitation
can propagate (Steinbock et al., 1995; Agladze et al., 1997). If
there is a path linking two points, an excitation generated at one
of the points will then appear at the other, and the time difference
between excitation and detection gives the estimation for the
shortest path linking these points. Yet another famous computing
application of a chemical medium working in parallel is the
image processing of black and white photos performed using a
photosensitive variant of BZ-reaction proceeding in a uniform,
spatially distributed system (Kuhnert, 1986, 1989; Rambidi and
Maximychev, 1997). In such medium, image processing is the
consequence of a non-homogeneous initial state generated by
initial illumination with intensity proportional to the grayscale of
pixels of the processed image. In all methods mentioned above,
the output information is coded in the time evolution of the
computing medium.

The number of examples where a chemical medium can be
efficiently used for computing is, however, limited. A top-down
design strategy offers a promising method for the identification
of the new ones. The strategy can be summarized as follows.
In the beginning, we select a problem we want to solve and
the computing medium that is supposed to do it. Next, we
define how the input information is introduced and how the
output is extracted from the observation of medium evolution.
The top-down approach can be applied if the properties of the
medium—and thus of the medium evolution—can be controlled
by a number of adjustable parameters. Within this strategy, we
are supposed to find the values of parameters for which the
medium answer (the output) gives the most accurate solution
of the considered problem. To do this, we need a number of
examples (the training dataset) that can be used to verify the
accuracy of computation performed by the medium.

In this paper, we concentrate on the geometrically oriented
problem illustrated in Figure 1A. The object of our research is
the Japanese flag with slightly rescaled proportions. We consider
a red disk (sun) located in the mid of a white square (here

represented by the Cartesian product [0, 1]×[0, 1]).We postulate
that a chemical computer can answer if a randomly selected point
(x, y) ∈ [0, 1]× [0, 1] is located in the red or in the white region.
To make the problem difficult, the disk radius r = (

√
2π)−1 is

selected such that the areas of the sun and the white region are
equal. A device that gives a random answer or a device that gives
the same answer (red, white) to all inputs thus solves the problem
with 50% accuracy (or with 50% chance to obtain the wrong
answer). We show below that a chemical medium can solve the
problem with much higher accuracy.

We postulated that the chemical medium composed of
three coupled oscillators, illustrated in Figure 1B, was able to
produce an accurate solution to the problem. The two-variable
Oregonator model (Field and Noyes, 1974; Jung et al., 1998)
of the Belousov-Zhabotinsky reaction (cf. Equations 1, 2) was
used to describe the time evolution of individual oscillators.
The interactions between individual oscillators were represented
by reactions involving activators of individual oscillators. The
choice of model has been motivated by the broad interest in
applications of BZ-reaction for chemical information processing.
The BZ-reaction is a complex, catalytic oxidation of an organic
substrate (usually malonic acid) in an acidic environment (Field
and Burger, 1985; Epstein and Pojman, 1998). Two stages of
BZ reaction can be identified. One is fast oxidation of the
catalyst, and the other is a slow reduction of the catalyst by
an organic substrate. The solution color reflects concentrations
of catalyst in the oxidized and reduced forms, and such types
of non-linear evolution of the medium as oscillations, wave
propagation, or the appearance of spatio-temporal patterns
can therefore be easily observed. If the ruthenium complex
(Ru(bpy)2+3 ) is used as the reaction catalyst, the BZ-reaction then
becomes photosensitive (Kádár et al., 1997) and can be externally
controlled by illumination. For the same initial concentrations
of reagents, the medium can oscillate at dark, show an excitable
behavior at a low light intensity, and have a steady state when
it is strongly illuminated. At specific conditions, a spatially
distributed medium can be locally excited, and the excitation
can propagate in space. This type of behavior resembles the
propagation of nerve impulses in living organisms. As a result,
the BZ reaction has attracted attention as an inexpensive
medium for experiments with neuron-like chemical computing
(Adamatzky et al., 2005; Gorecka and Gorecki, 2006; Gentili
et al., 2017). A moving pulse of excitation can be interpreted as
a propagating bit of information. The Oregonator model used
below to simulate in-silico the time evolution of the medium
(see Equations 1, 2) correctly describes this phenomenon (Holley
et al., 2011). However, such an approach requires a spatially
distributed medium with a complex structure and precisely
controlled reaction parameters, which seems complicated in real
applications (Adamatzky et al., 2011).

In a number of recent papers, we considered flow of
information (Grüunert et al., 2015) and the computational
potential of coupled oscillator networks (Gizynski and Gorecki,
2016, 2017b; Gizynski et al., 2017). It was demonstrated
that network parameters could be adjusted such that it
can solve selected problems, e.g., recognizing a sphere in a
multidimensional space or concluding on the type of cancer on

Frontiers in Chemistry | www.frontiersin.org 2 November 2020 | Volume 8 | Article 580703

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Gorecki and Bose Computing Using an Oscillator Network

FIGURE 1 | (A) The graphical illustration of the problem that is solved by the optimized network. The disk is located at the square center. Its radius was selected such

that the areas of the red sun and the white surrounding are equal. The network is supposed to answer if a randomly selected point (x, y) ∈ [0, 1]× [0, 1] belongs to the

red or to the white regions. (B) The structure of the considered chemical oscillator network. The black line indicates interactions between oscillators. The type of

oscillator #3 was optimized to achieve the maximum mutual information between locations of points and the number of activator maxima. (C) The time evolution of

the activator (the red curve) and the inhibitor (the green line) for the Oregonator model with the activator decay corresponding to that of the optimized network

(α = 0.849). The blue line represents the external illumination (cf. Equation 4, tillum = 4).

the basis of results of medical tests, with high accuracy. However,
numerical simulations leading to these conclusions were based
on oversimplified event-based-model reflecting only the basic
features of the time evolution of a chemical oscillator and
interactions between oscillators coupled with mutual activations.
The event-based-model assumes sharp boundaries between
three phases of the oscillation cycle: excitation, refractory, and
responsive phases. It takes interactions into account as the
condition for the excitation of an oscillator in the responsive
phase in contact with an excited oscillator. Here, we present
simulation results using the Oregonator model for a single
oscillator and a model for oscillator interactions based on
reactions involving their activators. We therefore believe the
current model is more realistic than the one previously used
and gives more information for potential experiments on the
chemical computation.

The paper is organized as follows. The description of the
mathematical model of the network time evolution and the
optimization procedure are described in the next section. Section

3 contains obtained results and their discussion. The conclusions
summarize obtained results and present suggestions for the
future studies.

2. THE MODEL OF THE OSCILLATOR
NETWORK AND ITS OPTIMIZATION
PROCEDURE

2.1. The Network
We postulate that the problem of attributing color to a point on
the Japanese flag defined by its coordinates can be approximately
solved by a network of interacting chemical oscillators (cf.
Figure 1B). The time evolution of each individual oscillator is
described by two-variable Oregonator model (Field and Noyes,
1974; Jung et al., 1998) combined with additional reaction (cf.
Equation 3) that reduces the concentration of activator. Let us
assume that the variables uj and vj represent concentrations of
the activator (Uj) and the inhibitor (Vj) for reactions proceeding
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in the oscillator #j. The equations describing the time evolution
of uj and vj read:

∂uj

∂t
=

1

ε
(uj − u2j − (fvj + φj(t))

uj − q

uj + q
)− αuj (1)

∂vj

∂t
= uj − vj (2)

The parameter ε sets up a ratio of time scales of variables uj
and vj, and q is a scaling constant and f is the stoichiometric
coefficient. In our simulations we used the following values of
Oregonator model parameters for all oscillators (1 ≤ j ≤ 3):
ε = 0.2, q = 0.0002 and f = 1.1. These values are similar to
those reported in the literature (Holley et al., 2011). We assumed
that the parameters of the Oregonator model were fixed and did
not undergo optimization whenwe searched for the network with
the highest ability to relate point position with its color.

The last term in Equation (1) describes the additional decay
of activator with the reaction rate α, which can be represented by
the following reaction:

Uj + Dj → products (3)

The time dependent function φj(t) describes the influence
of illumination on a photosensitive BZ-reaction and it is
proportional to the light intensity. We considered φj(t) in the
following form:

φj(t) = 0.1 · (1.001+ tanh(−10(t − tilum(j))) (4)

In this definition, the parameter tilum(j)(> 0) defines the moment
at which the illumination of the jth oscillator is switched off.
At the beginning, the value of φj(t) ∼ 0.2 and the Oregonator
model, with parameters given above and without the additional
decay of the activator, predicts a stable steady state corresponding
to uj = 0.0002 and vj = 0.0002. For long durations, φj(t)
approaches 0.0001, which corresponds to an oscillation with a
period of approximately 10.8 time units. The time evolution of
the activator (the red curve) and inhibitor (the green line) for the
Oregonator model for α = 0.849 is illustrated in Figure 1C. The
blue line represents the external illumination for tillum = 4.

We assumed that oscillators in the network are coupled via
the transport of the activator. This type of coupling was observed
in our experiment on BZ-droplets stabilized by a solution of
lipids in decane (Szymanski et al., 2011; Gizynski and Gorecki,
2017a). However, the network optimization method discussed
below is general and can be applied to other couplings, such as the
inhibitory coupling via transport of bromine studied by Vanag
and his co-workers (Vanag and Epstein, 2004; Kaminaga et al.,
2005, 2006; Smelov and Vanag, 2017). In such a case, a more
complex model of oscillator dynamics should be applied (Vanag
and Yasuk, 2018).

The interactions between oscillations in the considered
network are indicated by the linking lines shown in Figure 1B.
The pairs oscillators that interacted were fixed, and we did
not modify the interactions during the network optimization.

The coupling between the oscillators #k and #j was described
by additional reactions involving the activators Uk and Uj of
these oscillators:

Uj + Bj → Uk + Ck (5)

Uk + Bk → Uj + Cj (6)

with the identical reaction rate β . In reactions (3,5,6) B,C,
and D denote other molecules involved. We assume their
concentrations were high with respect to concentrations of
activators involved. The concentrations of B and D were thus
assumed to be constant during the network evolution, and they
are consequently not included in the model. Such an approach
reflects the idea that reactions in individual oscillators are
independent, and their coupling occurs as the result of processes
5 and 6 only.

Within our model the time evolution of the network is
described by the following set of kinetic equations:

∂uj

∂t
=

1

ε
(uj−u2j−(fvj+φj(t))

uj − q

uj + q
)−(α+3β)uj+β(u1+u2+u3)

(7)

∂vj

∂t
= uj − vj (8)

Let us notice that for each index j the contributions βuj in the last
two terms in Equation (7) cancel out reduce to −(α + 2β)uj +∑

i6=j βui, which reflects the kinetics of processes (3), (5), and (6).

Mathematically, the terms resulting from processes (5) and
(6) have a similar form to those describing the coupling between
CSTRs resulting from the exchange of equal volumes of reagents
(and assuming that the is no transport of inhibitor). For the
considered parameters of the Oregonator model (as well as a few
other we tried), we found the interactions between oscillators
described by reactions (5,6) were difficult to control without the
process (3) because the model, depending on the value of β ,
gave too weak or too strong coupling between oscillators. The
introduction of reaction (3) allowed us to control the value of
activator concentration around its maximum and to moderate
these interactions without the need to optimize all parameters of
the Oregonator model.

Following our previous studies, we assume that an oscillator
in the network can perform one of two functions (Gizynski and
Gorecki, 2016, 2017b; Gizynski et al., 2017). There are input
oscillators used to introduce the input values into the network.
The activity of an oscillator assigned as the input of x or y is
suppressed for time related to the input value.We assume that the
relationship is described by an affine function. If the jth oscillator
functions as the input one for the coordinate x ∈ [0, 1], then

tilum(j) = tstart + (tend − tstart) · x (9)

Keep in mind the symmetry of the problem the input oscillator
#k for the y value is inhibited for time:

tilum(k) = tstart + (tend − tstart) · y, (10)

Frontiers in Chemistry | www.frontiersin.org 4 November 2020 | Volume 8 | Article 580703

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Gorecki and Bose Computing Using an Oscillator Network

FIGURE 2 | (A) The idea of information processing with a network of oscillators illustrated using the parameters of the optimized network. Oscillators #1 and #2 are

inhibited by times related to the values of x and y respectively. The output information is coded in the number of activator maxima observed on the oscillator #3. The

time evolution of activator observed on this oscillator for points located in the white and red regions are shown in (B,C), respectively. The evolution was calculated

using the parameters of the optimized network: the oscillator #3 is the normal one with tilum (3) = 6.37, tmax = 20.23, tstart = 3.78, tend = 12.10, α = 0.849, β = 0.251.

and the values of parameters tend and tstart in Equations (9) and
(10) are identical. The values of tend and tstart were the subject of

network optimization procedure. The relationship between tilum
and the input value, obtained for the Japanese flag problem, is

illustrated in Figure 3B.
The network can also include so-called normal oscillators

inhibited for a fixed time that is not related to the values of x and

y. These normal oscillators moderate interactions in the medium

and optimize it for a specific problem. Here, the type of oscillator

#3 was not fixed, and the optimization procedure decided it.
We also assumed that the output information is coded

in the number of activator maxima observed on one of the
network oscillators within the time interval [0, tmax]. As we show
later, the choice of the output oscillator results directly from
the network optimization. The full definition of a computing
network therefore includes the number of oscillators in the
network, their types, the method of inputting x, y values, and the
interactions between oscillators.

The parameters that were modified during the network
optimization procedure were:

- The type of oscillator #3 and, in the case it was a normal
oscillator, its illumination time tilum(3),

- The length of time interval tmax, within which the network
evolution was observed,

- The times tstart and tend,
- The reaction rates α and β .

The values of network parameters and the parameters describing
the relationship between the input values and the time-
dependent illuminations of input oscillators determine the
medium evolution. For each set of parameters, we solved the set
of Equations (7, 8) numerically and studied the time evolution of
the network for any values of x and y. We used the explicit fourth-
order Runge-Kutta algorithm (Press et al., 2007) with h = 10−4

time step. The output information corresponding to a specific
input was extracted from the numerical solution as the number
of activator maxima observed at the selected oscillator within the
time interval [0, tmax]. Figures 2B,C show such evolution for two
selected points, one outside the sun and the other inside it. In the
first case, the output oscillator produced twomaxima of activator.
In the second, we observed just a single one.
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FIGURE 3 | (A) Locations of 800 points representing the records of the training dataset DS. The red points are in the sun area, the blue ones outside it. (B) The

relationship between tilum and the input value, obtained for the optimized network solving the Japanese flag problem. (C) The response of the optimized network to

inputs from the training dataset. The dark red points are located outside the sun area and generate a single maximum of activator at the output oscillator. The dark

blue points are in the sun area and generate two maxima of activator. (D) The red and blue bars correspond to the red and blue points in (A). The majority of red

points produce a single maximum of the activator on oscillator #3, whereas most of the records corresponding to blue points generate two maxima.

2.2. Network Optimization
The method of the top-down optimization of a computing
network has been described in details in our previous papers

(Gizynski and Gorecki, 2016, 2017b), and we thus present it here
shortly. In order to apply the method, we need a training dataset
DS = {(xn, yn, gn), n = 1,N} of the records in the form (x, y, g)
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where x, y ∈ [0, 1] and g ∈ {0, 1}. The numbers x, y denote the
point coordinates and g is the record type; g = 1 for points
located in the red disk and g = 0 for points outside it. Here,
we used DS of N = 800 records with randomly generated points
inside [0, 1]×[0, 1] located as illustrated in Figure 3A. Let us also
introduce the discrete random variable of record typesG, defined
as: G = {gn, n = 1,N}.

We postulate that information about the point color can be
extracted from the number of activator maxima recorded on
a selected oscillator of the network during the time interval
[0, tmax]. The quality of an oscillator network for solving a specific
problem can be estimated in the following way. Let us consider
a record (xn, yn, gn) ∈ DS and study the network evolution for
the input (xn, yn). Assume that o1(n), o2(n) and o3(n) are the
numbers of activator maxima observed on oscillators #1, #2, and
#3, respectively. Now, let us combine the results obtained for
all inputs from the training dataset together and introduce the
random variables Oj = {oj(n), n = 1,N} for j ∈ {1, 2, 3}. The
mutual information between the random variables G and Oj is
defined as (Cover and Thomas, 2006)

I(G;Oj) = H(G)+H(Oj)−H(G,Oj), (11)

and it measures the usefulness of the oscillator #j to give
information on the problem output. In general, the mutual
information is the amount of information (in bits) that one
random variable contains about another random variable. In
Equation (11), H(A) is the Shannon information entropy of the
discrete random variable A (Shannon, 1948) and the random
variable G,Oj is defined as G,Oj = {(gn, oj(n)), n = 1,N}.
Obviously, the oscillator for which I(G;Oj) is maximal was
selected as the network output. The maximum I(G;Oj) was used
as the measure of network fitness in our optimization program.

The use of mutual information gives the quantitative measure
of the network usefulness without the need to specify how to
translate the number of activator maxima into the output. On
the other hand, it has been shown that there is no monotonic
relationship between the accuracy and mutual information
(Gorecki, 2020), and a classifier optimized for the highest mutual
informationmay therefore be less accurate than another one with
lowermutual information. However, we believe this does not lead
to a significant reduction in accuracy.

The network parameters, such as the type of oscillator #3,
its inhibition time, the method for inputting the predictor
values, or the type of interactions between oscillators, undergo
optimization to achieve the highest mutual information on
a representative dataset of cases. Both systematic methods of
optimization and random trial and error ones can be applied.
We have found (Gizynski and Gorecki, 2016, 2017b; Gizynski
et al., 2017) that evolutionary optimization (Goldberg, 1989)
oriented on obtaining the best classifier for a representative
training dataset of the problem can lead to a computing network
that performs the anticipated task with reasonable accuracy. At
the beginning of the optimization procedure, we generated a
population of K = 200 networks and selected a random training
dataset illustrated in Figure 3A. The training dataset contained
377 points in the sun area (red) and 423 points in the surrounding

region (blue). The adjustable parameters defining each network
[type of oscillator #3, tilum(3), tmax, tstart , tend, α and β] were
randomly generated. The fitness of each network was calculated
using the whole training dataset. The next generation comprised
of 20% of most fit networks of the previous population and
of 80% of offspring generated by recombination and mutation
operations applied to oscillators from top 50% networks of the
previous population. We randomly selected two parents from
50% of the fittest networks and next recombined randomly
their parameters to obtain an offspring. After recombination,
we applied mutations to randomly selected parameters. The
probability of this operation was selected, such that on average,
a single parameter of the network was mutated. The maximum
change in the chosen parameter value was restricted to 10% of
the original one. Next, the fit of networks belonging to the new
generation were calculated, and the procedure was repeated. The
optimization procedure was continued for 1,000 generations.

3. RESULTS

The optimization procedure returned the network illustrated in
Figure 2A in which the oscillator #3 is of the normal type and
tilum(3) = 6.37. The other parameters of the network are the
following: tmax = 20.23, tstart = 3.78, tend = 12.10, α = 0.849,
and β = 0.251. The oscillator #3 is also the output one. For each
input, we observed one or two activator maxima at the output
oscillator. Figure 3C illustrates the relationship between the
point location and the number of activator maxima. The statistic
of the network outputs for all inputs from the training dataset
is illustrated in Figure 3D. For most cases located in the sun
area, we observed a single maximum (369 cases) and twomaxima
for only eight points (marked by dark blue dots in Figure 3C).
On the other hand, for most of the background points, two
activator maxima were observed (393 cases), whereas only 30
cases produced a singlemaximum (dark red points in Figure 3C).
We can use the majority rule and declare that all points for which
the network outputs a single maximum correspond to the sun,
and all points for which two maxima are observed correspond
to the surrounding white area. For the training dataset DS, such
a majority rule leads to (369 + 393)/800 ∼ 0.95 accuracy. It is
interesting that the distribution of incorrectly attributed cases is
not rotationally symmetric.

For more objective evaluation of the accuracy of the optimized
network we considered a large test datasetDT of 100,000 random,
uniformly distributed points in the square [0, 1]× [0, 1]. Figure 4
shows the comparison between the location of a point from
DT and the number of activator maxima observed on the
output oscillator within the time interval [0, tmax]. The red light
points are located inside the sun disk and produced a single
maximum (48,028 cases). The light blue points are located in
the surrounding area, and they forced two maxima of the output
oscillator (47,117 cases). Using the majority rule introduced for
the training dataset DS we can say that the total number of
correctly located points was 95,145 thus the classifier accuracy
is ∼95%. The dark colors mark points that are incorrectly
attributed. The dark red points are located outside the sun,
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FIGURE 4 | The figure shows how the optimized network sees the Japanese

flag. Each dot corresponds to a record from the testing dataset that contains

100,000 records. The red points produce a single activator maximum and are

thus considered to be sun. For the records represented by the blue points,

two maxima are observed, and they are thus classified as the surrounding

white area. The light red and light blue points are those that are classified

correctly. The dark red points belong to the white region in Figure 1A, but the

network thinks they belong to the sun. The dark blue points are the points

belonging to the sun, but the network incorrectly classifies them as the points

of the white surrounding area.

but they force a single activator maximum (2,967 cases). The
dark blue points produced two activator maxima, but they were
located in the sun area (1,888 cases).

The red points in Figure 4 (both light and dark) can be
regarded as the image of the sun area seen by the optimized
network. Instead of the disk, the network senses a complex, two-
horned shape. In order to describe it more precisely we introduce
new coordinates: p = x − y and q = x + y. In these coordinates,
the points producing a single activator maximum on the output
oscillator are located, as shown in Figure 5A. The upper fitting
curve (blue) is described:

FU(p) = 1.49928+ 5.56776p2 − 81.5484p4 + 503.745p6

− 2275.64p8 + 7512.65p10 − 14690.6p12 + 11764.8p14

(12)

and the lower fitting curve (green) is:

FD(p) = 0.432601+ 1.65454p2 − 2.0677p4 − 107.24p6

+ 1120.59p8 − 3887.3p10 + 5377.69p12 − 2552.69p14

(13)

Now we can forget about the original problem and consider the
question if a chemical computer can correctly distinguish the

points of the unit square that are located between the curves
FD(x − y) and FU(x − y). Such a problem looks rather difficult,
but the answer is simple: a good candidate for such a chemical
computer is the optimized network described above. Its accuracy
is around 99%. The incorrectly attributed points are marked in
Figure 5B. Most of them are located at the boundary, and the
error may be connected with oversimplified fitting. There are also
some points for which the attribution error is hard to explain
(the blue horizontal line at q ∼ 1.4 on Figure 5B), It would be
interesting to verify if the number of such points can be reduced
by changing the parameters of Oregonator.

4. DISCUSSION AND CONCLUSIONS

In this paper, we investigated whether a chemical computer
can solve the color determination problem for a point on
the Japanese flag. We considered the flag of Japan because it
represents more complex geometrical structure than the striped
pattern common for many flags like the Polish or the French
ones. For example the flag of France can be represented by
a unit square with the blue points for (x, y), x ∈ [0, 1/3), the
white area for (x, y), x ∈ [1/3, 2/3), and the red region defined as
(x, y), x ∈ [2/3, 1]. In such a case, the point color can be easily
determined by a single oscillator that is also the input of x-
coordinate. Let us consider tstart = 0. The inhibition time of input
oscillator [tillum(1)] is proportional to the value of x [tillum(1) =
xtend], and we can thus select tend such that a small number of
oscillations appear in the red area, more of them are seen for the
white points, and the largest number of oscillations is observed
if the input represents coordinates of a blue point. For example,
if tend = 32.4, then the oscillator with parameters given in this
paper observed for tmax = 47 shows 4, 3, and 2 maxima of
activator for blue, white and red regions respectively.

The idea of a neural network has inspired the considered
medium structure, composed as it is of interacting, individual
units. Classical image recognition methods are based on
multilayered neural networks in which the output of an artificial
neuron is a single number (MacKay, 2003). In our approach, the
time evolution of a neuron (oscillator) is more complex. The
output of a separated artificial neuron remains constant, whereas,
in our medium, the activator concentration in a non-interacting
oscillator periodically changes in time. The output also depends
on the time tmax it was observed. It seems that to determine the
color of a point on the Japanese flag with a given accuracy with a
standard neural network, one needs more nodes than the number
of oscillators used by our medium (Zammataro, 2010).

We have demonstrated that a simple network of just three
coupled chemical oscillators can predict the color of a randomly
selected point on the Japanese flag with 95% accuracy. Another
interesting result is that the network delivers a fast answer. The
output information if a point belongs to the white or the red
region on the flag appears just within two oscillation periods. Our
simulations were based on the Oregonator model that is more
realistic than the event-based model previously used in papers on
chemical classifiers (Gizynski and Gorecki, 2016, 2017b; Gizynski
et al., 2017; Gorecki, 2020). The results of both models were
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FIGURE 5 | (A) The shape of the sun area, as seen by the optimized network in the p,q coordinates. The blue and green lines are the fits of the sun boundaries (cf.

Equations 12, 13). (B) The positions of incorrectly classified points that are located in the region between the fitting lines. The blue points are classified as belonging to

the region outside, but they should be inside. The red points are classified as belonging to the red region, but they fail outside the fitting lines. In (B) for better visibility,

the upper fitting line is represented by a yellow curve.

qualitatively similar. It confirms that even small networks of
interacting oscillators can perform complex computations. It
can be expected that a more accurate location of point color
can be achieved when more oscillators are taken into account.
However, the numerical complexity of optimization rapidly
increases with the number of parameters. We are working on
the optimization method for large networks that would include
previously accumulated results for smaller ones.

It is worth noticing that the points classified as belonging to
the sun area group into an interesting, horned shape illustrated
in Figure 4A. The boundaries of this shape can be described by
complex polynomials of a high order. The problem of finding
whether a point is located inside a horn-shaped area is more
complex than the determination of point location with respect to
a disk located at the center of the unit square. If a point belongs to
the horned region, a high accuracy algorithm (∼99% accuracy)
is given by the network of three oscillators we optimized to see
the Japanese flag. We doubt whether any multilayered neural
network can produce equally simple algorithm of finding a
point in the horn-shaped area. An interesting problem for future
studies is whether or not the shape of the correctly classified
region can be regulated by the network parameters.

Results presented in the paper were obtained based on
computer simulations, but the Oregonator model can
qualitatively describe BZ-reaction and therefore brings

information for potential experiments on the chemical
computation. Systems of interacting oscillators have been
studied experimentally using a few techniques (Vanag and
Epstein, 2004; Kaminaga et al., 2005, 2006; Gentili et al.,
2017). Interacting droplets containing reagents of BZ-reaction
can be stabilized by a solution of lipids in the organic phase
(Szymanski et al., 2011). If the photosensitive variant of BZ-
reaction is used, then oscillations in droplets can be individually
controlled. Experiments on the control of three coupled droplets
mechanically stabilized inside a plastic cage were reported in
Gizynski and Gorecki (2017a). Precisely the same system can be
used as the classifier of a point in the Japan flag. The droplets
acting as normal oscillators in the network are inhibited by
illumination within the time interval that does not depend on the
input values. The illumination times of input droplets depend
on x and y, as described by Equations (9) and (10). However,
the experiments have demonstrated (Gizynski and Gorecki,
2017a) that it is rather difficult to stabilize even three droplets
if a standard variant of BZ-reaction with the malonic acid is
used. The bubbles of gas can appear between droplets, deform
them, and change interactions between oscillators. We therefore
believe that solid objects loaded with the catalyst, like DOWEX
beads (Kuze et al., 2019) or silica gel beads (Mallphanov and
Vanag, 2020), seem to be more suitable for experiments with
information processing using a network of oscillators. Also, the
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strategy of optical communication described by Gentili et al.
(2017) can be applied to control interactions between oscillators
and the inflow of input data.

We believe the maximization of information processing
functionality based on optimization of the mutual information
can be combined with other types of complex chemical
dynamics, such as excitability or multistability. However, in
typical experiments, oscillations are robust, whereas other types
of non-linear behavior are more difficult to control, stabilize,
and repeat. Additionally, our results illustrate that even a
small network of oscillators can have significant information
processing potential.
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