Supplementary information

A computer algorithm to discover iterative sequences of organic reactions

In the format provided by the authors and unedited

Supplementary Information for Manuscript titled „Computer algorithm discovers iterative sequences of organic reactions" by K. Molga, S. Szymkuć, P, Gołębiowska, O. Popik, P. Dittwald, M. Moskal, R. Roszak, J. Mlynarski* \& B.A. Grzybowski ${ }^{1 *}$

CONTENTS

Section S1. Additional examples of unprecedented iterative sequences discovered by the "basic" algorithm from Figure 2a 2
Section S2. Examples of iterative sequences found by the "basic" algorithm from Figure 2a and analogous to - but not identical with - iterations already described in the literature. 6
Section S3. Additional examples of unprecedented iterative sequences found by the "advanced" algorithm from Figure 2b,c 7
Section S4. Examples of previously known iterative sequences rediscovered by the algorithm. 18
Section S5. General experimental procedures. 20
Section S6. Iterative synthesis of 1,5,n polyols 21
Section S7. Iterative synthesis of $1,4, \mathrm{n}$ polyols 29
Section S8. Determination of absolute configuration of newly formed stereogenic centers (Mosher ester analysis) 36
Section S9. Iterative synthesis of monhexocin's fragment 44
Section S10. Literature precedents of heterocycle-forming reactions. 54
Section S11. Spectroscopic data 55
Section S12. User Manual for Allchemy's "Iterator" module 87
Section S13. Selection of conditions for iterative sequences. 93
Section S14. Pseudocode for the algorithm to identify iterative sequences. 96
Section S15. References 101

Section S1. Additional examples of unprecedented iterative sequences discovered by the "basic" algorithm from Figure 2a.

2 1. Enantioselective 1,4-addition 2. Esters reduction 3. Synthesis of Z-bromoalkenes

3 1. Enantioselective vic-difunctionalisation 2. Ester reduction 3. Appel rection 4. Synthesis of Grignard reagents

Conditions: i. 1) LiCl 2) $\mathrm{MeONa}, \mathrm{MeOH}$ ii. LiAlH_{4} iii. $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$ iv. Mg , THF
4 1. Enantioselective allylation 2: Hydrogenolysis of benzyl ethers 3. Oxidation of primary alcohols

5 1. 1,2-anti selective alkylation 2. Ester reduction 3. Synthesis of alkyl iodides

7 1. Ring opening of lactones 2. Appel reaction 4. Synthesis of Grignard reagents

8 1. Opening of tetrahydrofurans 2. Appel reaction 3. Synthesis of Grignard reagents

Conditions: i. $\mathrm{Ni}(\operatorname{cod})_{2}, \mathrm{BINAP}$, toluene ii. $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$ iii. Mg , THF
9 1.Carbomagnesation 2. Appel reaction 3. Synthesis of Grignard reagents

10 1.Carbomagnesation-allylation 2. Appel reaction 3. Synthesis of Grignard reagents

11 1. Reductive aldol followed by reduction 2. Oxidation

Conditions: i. 1) chiral.borane, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ 2) $\left.\mathrm{RCHO}-78^{\circ} \mathrm{C} 3\right) \mathrm{LiAlH}_{4}$ ii. DMP
12 1. Tricomponent ARC-II type coupling 2. Ozonolysis

Conditions: i. tBuLi then HMPA ii. O_{3}
13 1. Addition of allylstannanes 2. Ozonolysis

14 1. Crotylation 2. Ozonolysis

Conditions: i. [Ru]-complex, chiral phosphine, chiral acid ii. O_{3} then NaBH_{4}
15 1.Formation of alpha-diazo carbonyls 2. Wolff rearrangement followed by formation of acid halides

Conditions: i. $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, \mathrm{MeCN}$ ii. 1) $\mathrm{Ag}(\mathrm{I})$ cat., hv 2) oxalyl chloride
16 1. Furane synthesis 2. Condensation

17 1. Synthesis of terminal alkynes 2. Addition of diazoesters to alkynes

19 1. Synthesis of pyridines 2. Addition of terminal alkynes to esters

21 1. Synthesis of pyridines 2. Synthesis of ketoximes

22 1. Synthesis of cyanopyrroles 2. Synthesis of esters from nitriles

Conditions: i. 1) NaH 2) $\mathrm{NH}_{4} \mathrm{OAc}$ ii. $\mathrm{HCl}, \mathrm{MeOH}$

Figure S1. Examples of new iterative sequences discovered by the "basic" algorithm from main-text Figure 2a.

Section S2. Examples of iterative sequences found by the "basic" algorithm from Figure 2a and analogous to - but not identical with - iterations already described in the literature.

2 1.Chiral auxiliary directed alkylation of enolates 2. Ester reduction 3. Synthesis of alkyl iodides

3 1. Asymmetric allylic alkylation 2. Ozonolysis 3. Appel reaction 4. Magnesiation

Conditions: i. CuBr, chiral ligand ii. O_{3} then NaBH_{4} iii. $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$ iv. Mg , THF
4 1. Enantioselective 1,4-addition 2. Ester reduction 3. Synthesis of alkyl bromides 4. Synthesis of Grignard reagents

5 1.Wittig reaction 2. Hydroformylation

Conditions: i. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ ii. $\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{acac}, \mathrm{CO} / \mathrm{H}_{2}$, biphephos
6 1. Asymmetric aldol followed by reduction 2. Oxidation

Conditions: i. 1) $\mathrm{Bu}_{2} \mathrm{BOTff}^{2} \mathrm{NEt}_{3}$ 2) Raney Ni, acetone 3) LiAlH_{4} ii. DMP
\mathbf{X}_{C} - chiral auxiliary
7

Figure S2. Examples of iterative sequences found by the "basic" algorithm from main-text Figure 2a and analogous to - but not identical with - iterations already described in the literature.

Section S3. Additional examples of unprecedented iterative sequences found by the

 "advanced" algorithm from Figure 2b,c.Note: In sequences \#1 and \#2 below, the final structures (peptides and $1, n$-polyols) can also be prepared by known iterations. The iterations found by the algorithm are shown here because they allow for the use of alternative reagents and/or conditions. For example, amines and carboxylic acids used in known (also rediscovered by our algorithm) iterative amide couplings are commonly regenerated either under acidic (from - NHBoc/-COOtBu groups) or basic (from -NHFmoc/-COOEt groups) conditions. Sequences 1A-D shown below enable regeneration of necessary functional groups under reductive (amine from sulfonamide or nitro groups) or oxidative (carboxylic acid from alcohol or alkene) conditions thus enabling coupling with substrates possessing both acid- and base-labile fragments.

1d 1. Amide coupling 2. Cleavage of sulfonamide

2a 1. Grignard reaction 2. Ozonolysis/reduction 3. Appel reaction 4. Magnesiation

[^0]3a 1. Suzuki coupling 2. Ester reduction 3. Takai Olefination

3b 1. Suzuki coupling 2. TBS removal 3. Oxidation 4. Takai Olefination

6 1. Sonogashira coupling 2. TBS removal 3. Oxidation 4. Corey-Fuchs reaction

7 1. Decarboxylative vinylation 2. Debenzoylation 3. Oxidation

8 1. Tandem allylation-alkenylation 2. Debenzoylation 3. Oxidation

$$
\text { Conditions: i. 1) nBuLi, TMEDA 2) Pd complex, TBAF ii. } \mathrm{NH}_{3} \text { iii. } \mathrm{Phl}(\mathrm{OAc})_{2}
$$

9 1. Diarylation of styrene 2. TBS deprotection 3. Oxidation 4. Olefination

Conditions: i. $\mathrm{NiCl}_{2}, \mathrm{~B}_{2} \mathrm{pin}_{2}$, EtOK ii. TBAF iii. $\mathrm{Phl}(\mathrm{OAc})_{2}$ iv. $\mathrm{PPh}_{3}=\mathrm{CH}_{2}$
10 1. Addition of organometallics to esters 2. TBS deprotection 3. Appel reaction 4. Magnesiation

11 1. Addition of organometallics to esters 2. Ozonolysis 3. Appel reaction 4. Magnesiation

12 1. Addition of organometallics to esters 2. Ozonolysis 3. Oxidation

13

1. Shapiro reaction 2. Enol ether hydrolysis

14 1. Opening of epoxide 2. epoxidation

15a 1. Aldol condensation 2. TBS deprotection 3. Oxidation

15b 1. Aldol reaction 2. Ozonolysis

16 1. Wittig olefination 2. TBS deprotection 3. Appel reaction

17 1. Morita-Baylis-Hilman reaction 2. TBS deprotection 3. Oxidation

18a 1. Quinazoline synthesis 2. Lithiation 3. Hydroxymethylation

18b 1. Quinazoline synthesis 2. TBS deprotection 3. Oxidation

18c 1. Quinazoline synthesis 2. Debenzylation 3. Oxidation

Conditions: i. $\mathrm{FeCl}_{3}, \mathrm{O}_{2}$ ii. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$ iii. TPAP, NMO

19a 1. Triazolopyridine synthesis 2 . Metalation 3. Formylation

19b 1. Triazolopyridine synthesis 2. Debenzylation 3. Oxidation

20a 1. Quinoline synthesis 2. Metalation 3. Cyanation

20b 1. Quinoline synthesis 2. Metalation 3. Cyanation

21a 1. Pyrazine synthesis 2. TBS deprotection 3. Oxidation 4. Olefination

216 1. Quinoxaline synthesis 2. Ozonolysis 3. Schmidt reaction

22 1. Indazole synthesis 2. TBS deprotection 3. Mitsunobu reaction 4. Reduction

25 1. Aldehyde allylation followed by deprotection 2. Ester hydrolysis 3. Oxidation

27 1. Synthesis of tetrahydropyrans 2. TBS deprotection 3. Oxidation

28 1. Opening of epoxides 2. TBS deprotection 3. Appel reaction 4. Magnesiation

29 1. Stereoselective alkylation of enolates 2. TBS deprotection 3. Appel reaction

30 1. Prins-Ritter reaction 2. TBS deprotection 3. Oxidation

31 1. Enantioselective 1,4-addition 2. TBS deprotection 3. Appel reaction 4. Magnesiation

Conditions: i. CuI, TMSCl ii. TBAF iii. $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$ iv. Mg, THF
32 1. Enantioselective 1,4-addition 2. Ester reduction 3. Olefination

Conditions: i. 1) $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ 2) $\mathrm{CuCl}, \mathrm{AgOTf}, \mathrm{TMSCl}$, chiral ligand ii. DiBAL-H iii. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$; Bz - benzoyl
33 1. Enantioselective 1,4-addition 2. Ozonolysis 3. Appel reaction 4. Magnesiation

34 1. Diboration-oxidation of dienes 2. TBS deprotection 3. Oxidation

35 1. Stereoselective Mukayama Aldol reaction 2. Hydrolysis of thioacetals

Conditions: i. LDA then RCHO ii. Mel, CaCO_{3}

36d 1. Opening of ethers 2. Hydroboration 3. Appel reaction 4. Magnesiation

37 1. Oxa-Povarov reaction 2. TBS deprotection 3. Oxidation 4. Olefination

Figure S3. Additional examples of new iterative sequences found by the "advanced" algorithm from main-text Figure 2b,c.

Section S4. Examples of previously known iterative sequences rediscovered by the algorithm.

2a 1. Amide coupling 2. Cleavage of carbamate

2c 1. Amide coupling 2. Cleavage of carbamate

2d 1. Amide coupling 2. Reduction of azides

3 1. Suzuki coupling 2. B-MIDA hydrolysis

4

1. HWE Olefination 2. Reduction of ester to aldehyde

Sa 1. Asymmetric allylation 2. Ozonolysis

Sb 1. Asymmetric allylation 2. Ozonolysis

Conditions: i. [r]-complex, chiral phosphine ii. O_{3}
6

Conditions: i. [Pd] catalyst, Cut i. TBAF

Figure S4. Examples of previously known iterative sequences rediscovered by the algorithm described in the main text.

Section S5. General experimental procedures.

All starting materials and reagents were obtained from commercial sources and, unless otherwise noted, were used as received. All solvents used were freshly distilled prior to use. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400,500 or 600 MHz and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100,125 or 150 MHz with complete proton decoupling. Chemical shifts are given in δ relative to the residual signals of the deuterated solvents. High-resolution mass spectra were acquired using electron ionization (EI) or electrospray ionization (ESI) modes with a time-of-flight detector. Infrared (IR) spectra were recorded on a Fourier transform infrared (FT-IR) spectrometer as a thin film on a NaCl plate (film). HPLC analysis were performed on a HPLC system equipped with chiral stationary phase columns with an UV detector. Optical rotations were measured at room temperature with a polarimeter. TLC was performed with aluminum plates coated with 60 F254 silica gel. Plates were visualized with UV light (254 nm) and by treatment with ethanolic p-anisaldehyde with sulfuric and glacial acetic acid followed by heating, aqueous cerium(IV) sulfate solution with molybdic and sulfuric acid followed by heating, or aqueous potassium permanganate with sodium hydroxide and potassium carbonate solution followed by heating. Reaction products were purified by flash chromatography using silica gel 60 (230-400 mesh).

Section S6. Iterative synthesis of $\mathbf{1 , 5 , n}$ polyols

Reagents and conditions: (a) allyl acetate, Krische's Ir Catalyst ((S)-Ir or (R)-Ir), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, i-PrOH, THF, $100^{\circ} \mathrm{C}, 16-18 \mathrm{~h}$; (b) PMBCl, $\mathrm{NaH}, \mathrm{TBAI}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ to rt, $17-20 \mathrm{~h}$; (c) $\mathrm{Zn}(\mathrm{CN}) 2$, $\mathrm{NiCl} 2 \cdot 6 \mathrm{H} 2 \mathrm{O}, \mathrm{dppp}, \mathrm{Zn}$, DMAP, H2O, MeCN, $80^{\circ} \mathrm{C}, 22-24 \mathrm{~h}$; (d) DIBAL-H, DCM, $-78^{\circ} \mathrm{C}$ to $\mathrm{rt}, 1.5-2 \mathrm{~h}$.

Scheme S1. Iterative synthesis of $1,5, \mathrm{n}$ polyols via asymmetric allylation.

(S)-1-phenylbut-3-en-1-ol (SI-1). Prepared via adaptation of procedure from ${ }^{\mathrm{R} 1}$.

An oven-dried vacuum Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.078 \mathrm{~g}, 0.24 \mathrm{mmol}, 6 \mathrm{~mol} \%)$ and Krische Ir Catalyst ((S)-SEGPHOS, 4-cyano-3nitrobenzoate ligated) ($0.207 \mathrm{~g}, 0.20 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The reaction vessel was placed under an atmosphere of argon, and anhydrous THF (20 mL), benzaldehyde ($0.407 \mathrm{~mL}, 4.00 \mathrm{mmol}$), allyl acetate ($0.863 \mathrm{~mL}, 8.00 \mathrm{mmol}$, 2 equiv) and 2-propanol ($0.612 \mathrm{~mL}, 8.00 \mathrm{mmol}, 2$ equiv) were added by syringe. The reaction vessel was sealed and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ and was monitored by TLC. After 16 h , the mixture was allowed to reach rt and was concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate $9: 1$) to give SI-1 ($0.480 \mathrm{~g}, 81 \%, 97 \%$ ee by HPLC analysis) as a slightly yellow liquid.

HPLC (Chiralcel OD-H, hexane $/ i-\mathrm{PrOH} 95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$): $t_{\mathrm{R}(\text { minor })}=18.2$ $\min (R), t_{\mathrm{R}(\text { major })}=19.4 \mathrm{~min}(S) ;\left(\right.$ lit. $^{\mathrm{R} 2} t_{\mathrm{R}}=20.7 \mathrm{~min}(R), t_{\mathrm{R}}=22.1 \mathrm{~min}(S)$;
$[\alpha]^{27} \mathbf{D}-63.0\left(\mathrm{c} 1.19, \mathrm{CHCl}_{3}\right)\left(\mathrm{lit} .{ }^{\mathrm{R} 3}[\alpha]^{25} \mathrm{D}-63.2\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right)\right.$ (for 97% ee $)$);
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 5.80$ (dddd, $J=17.0$, $10.3,7.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.73$ (dd, $J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.44$ (m, 2H), 2.00 (brs, 1H);
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.0,134.6,128.5,127.7,125.9,118.5,73.4,44.0 ;$
IR (film, DCM) 3541, 3378, 3075, 3030, 2979, 2930, 1641, $1493 \mathrm{~cm}^{-1}$.

(S)-1-methoxy-4-(((1-phenylbut-3-en-1-yl)oxy)methyl)benzene (1).
$\mathrm{NaH}(60 \%$ dispersion in mineral oil) ($0.132 \mathrm{~g}, 3.31 \mathrm{mmol}, 2$ equiv) was added to a flask containing SI-1 ($0.245 \mathrm{~g}, 1.65 \mathrm{mmol}$) and TBAI ($0.061 \mathrm{~g}, 0.17 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in anhydrous DMF (3.30 mL) cooled to $0^{\circ} \mathrm{C}$. Reaction mixture was flushed with argon and stirred for 30 min at $0^{\circ} \mathrm{C}$. Then, 4 -methoxybenzyl chloride ($0.448 \mathrm{~mL}, 3.31 \mathrm{mmol}, 2$ equiv) was added dropwise
and the mixture was stirred at rt . The reaction was monitored by TLC and after 18 h the mixture was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with ethyl acetate. Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate 98:2) to give $\mathbf{1}$ (0.425 g , 96\%) as a slightly yellow liquid.
$[\boldsymbol{\alpha}]^{28} \mathbf{D}-70.7\left(\mathrm{c} 1.09, \mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\right.$ lit. $^{\mathrm{R} 4}[\alpha]^{20}{ }_{\mathrm{D}}=+67.3\left(\mathrm{c} 0.95, \mathrm{C}_{6} \mathrm{H}_{6}\right)($ for (R)-enantiomer);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H})$, 5.78 (ddt, $J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}$, $J=7.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (dddt, J $=14.2,7.2,5.9,1.3 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,142.2,135.1,130.8,129.5,128.5,127.8,127.1,116.9$, 113.9, 81.0, 70.2, 55.4, 42.8;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na} 291.1361$; Found 291.1356;
IR (film) 3067, 3030, 3003, 2934, 2906, 2861, 2837, 1612, 1513, $1455 \mathrm{~cm}^{-1}$.

(S)-5-((4-methoxybenzyl)oxy)-5-phenylpentanenitrile (2). Prepared via adaptation of procedure from ${ }^{\mathrm{R5}}$.

An oven-dried vacuum Schlenk tube equipped with a magnetic stir bar was placed under an atmosphere of argon and charged with $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.018 \mathrm{~g}, 0.08 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, dppp (0.037 $\mathrm{g}, 0.09 \mathrm{mmol}, 6 \mathrm{~mol} \%)$, zinc powder ($0.098 \mathrm{~g}, 1.50 \mathrm{mmol}, 1$ equiv), $\mathrm{Zn}(\mathrm{CN})_{2}(0.106 \mathrm{~g}, 0.90$ mmol, 0.6 equiv), DMAP ($0.183 \mathrm{~g}, 1.50 \mathrm{mmol}, 1$ equiv), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(7.50 \mathrm{~mL}$), compound $1(0.403 \mathrm{~g}, 1.50 \mathrm{mmol})$ and water ($0.054 \mathrm{~mL}, 3.00 \mathrm{mmol}, 2$ equiv). The reaction vessel was sealed and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ and was monitored by TLC. After 24 h , the mixture was allowed to reach rt. Next, it was filtered through a short pad of silica gel and washed with ethyl acetate. The solvent was concentrated in vacuo and the residue was purified by flash column chromatography (hexane/ethyl acetate $85: 15$) to give $2(0.357 \mathrm{~g}, 81 \%)$ as a colorless oil.
$\left[\boldsymbol{\alpha}^{\mathbf{1 9}}{ }^{\mathbf{D}} \mathbf{D}-91.0\left(\mathrm{c} 1.29, \mathrm{CHCl}_{3}\right) ;\right.$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H})$, $6.92-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=8.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.73-$ 1.61 (m, 1H);
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,141.9,130.4,129.5,128.7,128.0,126.7,119.7,114.0$, 79.9, 70.2, 55.4, 37.2, 22.1, 17.1;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na} 318.1470$; Found 318.1475;
IR (film, DCM) 3061, 3030, 3003, 2935, 2865, 2838, 2245, 1612, 1585, 1513, $1454 \mathrm{~cm}^{-1}$.

(S)-5-((4-methoxybenzyl)oxy)-5-phenylpentanal (3).

To a stirred solution of $2(0.325 \mathrm{~g}, 1.10 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(11.0 \mathrm{~mL})$ cooled to $-78^{\circ} \mathrm{C}$ was added DIBAL-H solution (1.0 M in DCM) ($1.320 \mathrm{~mL}, 1.32 \mathrm{mmol}, 1.2$ equiv) in a dropwise manner. The mixture was stirred at $-78^{\circ} \mathrm{C}$ and was monitored by TLC. After 1.5 h , the reaction was quenched by addition of sat. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution $(0.143 \mathrm{~mL})$ and the mixture was allowed to slowly reach rt . The mixture was diluted with DCM and sat. potassium sodium tartrate solution was added. After the layers were separated, the aqueous phase was extracted with DCM. Combined organic phases were washed with 50% potassium sodium tartrate solution and then brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate $85: 15$) to give $\mathbf{3}(0.284 \mathrm{~g}, 87 \%)$ as a colorless oil.
$[\boldsymbol{\alpha}]^{19} \mathbf{D}-79.9\left(\mathrm{c} 1.42, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.18(\mathrm{~m}$, $2 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.50(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,159.3,142.4,130.7,129.5,128.6,127.8,126.9,113.9$, 80.7, 70.2, 55.4, 43.8, 37.8, 18.8;

IR (film, DCM) 3061, 3029, 3002, 2935, 2863, 2837, 2721, 1722, 1612, 1585, $1513 \mathrm{~cm}^{-1}$.

(4S,8S)-8-((4-methoxybenzyl)oxy)-8-phenyloct-1-en-4-ol (SI-2). Prepared via adaptation of procedure from ${ }^{\mathrm{R} 1}$.

An oven-dried vacuum Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.030 \mathrm{~g}, 0.09 \mathrm{mmol}, 12 \mathrm{~mol} \%)$ and Krische Ir Catalyst (R)-SEGPHOS, 4-cyano-3nitrobenzoate ligated) $(0.081 \mathrm{~g}, 0.08 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The reaction vessel was placed under an atmosphere of argon, and anhydrous THF (3.90 mL), $\mathbf{3}(0.233 \mathrm{~g}, 0.78 \mathrm{mmol})$, allyl acetate ($0.168 \mathrm{~mL}, 1.56 \mathrm{mmol}, 2$ equiv) and 2-propanol ($0.119 \mathrm{~mL}, 1.56 \mathrm{mmol}, 2$ equiv) were added by syringe. The reaction vessel was sealed and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ and was monitored by TLC. After 18 h , the mixture was allowed to reach rt and was concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate 4:1) to give SI-2 ($0.215 \mathrm{~g}, 81 \%$) as a colorless oil.
$[\boldsymbol{\alpha}]^{19} \mathbf{D}-68.4\left(\mathrm{c} 1.08, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H})$, $5.85-5.73$ (m, 1H), $5.15-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.39$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (dd, $J=7.9,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.14-$ $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,142.8,135.0,130.8,129.6,128.6,127.7,126.9,118.2$, $113.9,81.2,70.6,70.2,55.4,42.0,38.4,36.7,22.3 ;$

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na} 363.1936$; Found 363.1944;
IR (film, DCM) 3436, 3066, 3029, 3001, 2933, 2862, 1640, 1612, 1586, $1513 \mathrm{~cm}^{-1}$.

4,4'-((((1S,5S)-1-phenyloct-7-ene-1,5-diyl)bis(oxy))bis(methylene))bis(methoxybenzene) (4).
$\mathrm{NaH}(60 \%$ dispersion in mineral oil) $(0.040 \mathrm{~g}, 1.00 \mathrm{mmol}, 2$ equiv) was added to a flask containing SI-2 ($0.170 \mathrm{~g}, 0.50 \mathrm{mmol}$) and TBAI ($0.018 \mathrm{~g}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in anhydrous DMF (1.00 mL) cooled to $0^{\circ} \mathrm{C}$. Reaction mixture was flushed with argon and stirred for 30 min at $0^{\circ} \mathrm{C}$. Then, 4-methoxybenzyl chloride ($0.136 \mathrm{~mL}, 1.00 \mathrm{mmol}, 2$ equiv) was added dropwise and the mixture was stirred at rt. The reaction was monitored by TLC and after 17 h the mixture was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with ethyl acetate. Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate 95:5) to give 4 (0.195 g , 85%) as a colorless oil.
$[\alpha]^{19} \mathbf{D}-54.0\left(\mathrm{c} 1.17, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 4 \mathrm{H})$, $5.81(\mathrm{ddt}, J=17.3,10.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.04(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=7.8,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.79$ (m, 1H), $1.68-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.35(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,159.2,142.9,135.2,131.2,131.0,129.5,129.4,128.5$, $127.6,127.0,116.9,113.9,113.9,81.3,78.2,70.7,70.2,55.4,38.5,38.5,33.9,22.0$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na} 483.2511$; Found 483.2495;
IR (film, DCM) 3064, 3030, 3001, 2935, 2861, 2837, 1639, 1612, 1586, $1513 \mathrm{~cm}^{-1}$.

(5R,9S)-5,9-bis((4-methoxybenzyl)oxy)-9-phenylnonanenitrile (5). Prepared via adaptation of procedure from ${ }^{\mathrm{R} 5}$.

An oven-dried vacuum Schlenk tube equipped with a magnetic stir bar was placed under an atmosphere of argon and charged with $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.004 \mathrm{~g}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, dppp (0.009 $\mathrm{g}, 0.02 \mathrm{mmol}, 6 \mathrm{~mol} \%)$, zinc powder $(0.023 \mathrm{~g}, 0.35 \mathrm{mmol}, 1$ equiv $), \mathrm{Zn}(\mathrm{CN})_{2}(0.025 \mathrm{~g}, 0.21$ mmol, 0.6 equiv), DMAP ($0.043 \mathrm{~g}, 0.35 \mathrm{mmol}$, 1 equiv), anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.75 \mathrm{~mL})$, compound $4(0.161 \mathrm{~g}, 0.35 \mathrm{mmol})$ and water $(0.013 \mathrm{~mL}, 0.70 \mathrm{mmol}, 2$ equiv). The reaction vessel was sealed and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ and was monitored by TLC. After 22 h , the mixture was allowed to reach rt. Next, it was filtered through a short pad of silica gel and washed with ethyl acetate. The solvent was concentrated in vacuo and the residue was purified by flash column chromatography (hexane/ethyl acetate $85: 15$) to give $5(0.128 \mathrm{~g}, 75 \%)$ as a colorless oil.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}-26.4\left(\mathrm{c} 0.98, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 4 \mathrm{H})$, $4.44-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{dddd}, J=$ $13.4,9.6,7.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.40(\mathrm{~m}, 8 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,159.3,142.8,130.8,130.8,129.5,129.5,128.6,127.7$, $126.9,119.8,114.0,113.9,81.1,77.4,70.7,70.2,55.4,38.5,33.6,32.8,21.8,21.5,17.3$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Na} 510.2620$; Found 510.2613;

IR (film, DCM) 3060, 3030, 3001, 2936, 2863, 2837, 2244, 1612, 1585, 1513, $1455 \mathrm{~cm}^{-1}$.

(5S,9S)-5,9-bis((4-methoxybenzyl)oxy)-9-phenylnonanal (6)
To a stirred solution of $5(0.029 \mathrm{~g}, 0.06 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(0.60 \mathrm{~mL})$ cooled to $-78{ }^{\circ} \mathrm{C}$ was added DIBAL-H solution (1.0 M in DCM) $(0.072 \mathrm{~mL}, 0.07 \mathrm{mmol}, 1.2$ equiv) in a dropwise manner. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ and was monitored by TLC. After 2 h , the reaction was quenched by addition of sat. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution $(0.008 \mathrm{~mL})$ and the mixture was allowed to slowly reach rt. The mixture was diluted with DCM and sat. potassium sodium tartrate solution was added. After the layers were separated, the aqueous phase was extracted with DCM. Combined organic phases were washed with 50% potassium sodium tartrate solution and then brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate $4: 1$) to give $6(0.023 \mathrm{~g}, 77 \%)$ as a slightly yellow oil.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}-33.9\left(\mathrm{c} 1.59, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.72(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.17(\mathrm{~m}$, $4 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 4 \mathrm{H}), 4.42-4.34(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{dd}, J=7.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{p}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.6,159.3,142.9,131.1,130.9,129.5,129.5,128.6,127.6$, $127.0,113.9,81.2,78.2,70.7,70.2,55.4,55.4,44.0,38.6,33.7,33.4,21.9,18.2$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O} 5 \mathrm{Na} 513.2617$; Found 513.2627;
IR (film, DCM) 3061, 3030, 3000, 2935, 2862, 2720, 1723, 1612, 1586, $1513 \mathrm{~cm}^{-1}$.

Section S7. Iterative synthesis of $\mathbf{1 , 4 , n}$ polyols

Reagents and conditions: (a) allyl acetate, Krische's Ir Catalyst ((S)-Ir or (R)-Ir), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, i - $\mathrm{PrOH}, \mathrm{THF}, 100^{\circ} \mathrm{C}, 16-18 \mathrm{~h}$; (b) $\mathrm{PMBCl}, \mathrm{NaH}, \mathrm{TBAI}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$ to rt, $17-20 \mathrm{~h}$; (e) 1) $9-\mathrm{BBN}, \mathrm{THF}$, reflux, $1-2 \mathrm{~h}, 2$) $\mathrm{NaOH}(\mathrm{aq})(0.5 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$, $\mathrm{EtOH}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (f) PCC, MS $4 \AA$, DCM, rt, 1.5 h.

Scheme S2. Iterative synthesis of 1,4,n polyols via asymmetric allylation.

(S)-4-((4-methoxybenzyl)oxy)-4-phenylbutan-1-ol (7).

To a solution of $\mathbf{1}(0.309 \mathrm{~g}, 1.15 \mathrm{mmol})$ in anhydrous THF (4.60 mL) was added drop-wise 9borabicyclo[3.3.1]nonane solution (0.5 M in THF) ($6.90 \mathrm{~mL}, 3.45 \mathrm{mmol}, 3$ equiv) over 10 min and the mixture was heated under reflux for 2 h . After cooling, the reaction mixture was treated with ethanol (3.00 mL), 2 M NaOH solution (1.50 mL) and $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ($30 \%(\mathrm{w} / \mathrm{w})$ in $\mathrm{H}_{2} \mathrm{O}$) $(1.50 \mathrm{~mL})$ and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was monitored by TLC and upon completion sat. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution and $\mathrm{Et}_{2} \mathrm{O}$ were added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate 7:3) to give $7(0.319 \mathrm{~g}, 97 \%)$ as a slightly yellow oil.
$\left[\boldsymbol{\alpha} \boldsymbol{]}^{\mathbf{2 3}}{ }_{\mathbf{D}}\right.$-82.2 (c 1.08, $\left.\mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 2 \mathrm{H})$, $4.40(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.61(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,142.5,130.4,129.7,128.6,127.7,126.9,114.0,81.2$, 70.3, 62.9, 55.4, 35.2, 29.5;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}$ 309.1467; Found 309.1471;
IR (film, DCM) 3399, 3061, 3030, 3001, 2935, 2865, 1612, 1585, $1513 \mathrm{~cm}^{-1}$.

(S)-4-((4-methoxybenzyl)oxy)-4-phenylbutanal (8).

To a solution of $7(0.315 \mathrm{~g}, 1.10 \mathrm{mmol})$ in anhydrous DCM (5.50 mL) were added molecular sieves $4 \AA$ (beads) $(0.550 \mathrm{~g})$ and pyridinium chlorochromate ($0.474 \mathrm{~g}, 2.20 \mathrm{mmol}, 2$ equiv) and the mixture was stirred at rt . The reaction was monitored by TLC and after $1.5 \mathrm{~h} \mathrm{Et}_{2} \mathrm{O}(5.50$ mL) was added. After 30 min of intensive stirring, the mixture was filtered through a Celite
plug, which was thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate 9:1) to give $\mathbf{8}(0.246 \mathrm{~g}, 79 \%)$ as a colorless oil.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}-91.1\left(\mathrm{c} 1.31, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.73(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.18(\mathrm{~m}$, $2 \mathrm{H}), 6.92-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=8.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{ddt}, J=14.2,8.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (dddd, $J=14.2,7.5,6.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2,159.3,141.8,130.4,129.5,128.7,127.9,126.8,113.9$, 80.0, 70.3, 55.4, 40.6, 31.1;

HRMS (ESI) $m / z:[\mathrm{M}-\mathrm{H}]^{-}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}$ 283.1334; Found 283.1329;
IR (film, DCM) 3061, 3030, 3003, 2934, 2836, 2725, 1721, 1611, 1585, $1512 \mathrm{~cm}^{-1}$.

(4R,7S)-7-((4-methoxybenzyl)oxy)-7-phenylhept-1-en-4-ol (9). Prepared via adaptation of procedure from ${ }^{\mathrm{R} 1}$.

An oven-dried vacuum Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.007 \mathrm{~g}, 0.020 \mathrm{mmol}, 12 \mathrm{~mol} \%)$ and Krische Ir Catalyst ((S)-SEGPHOS, 4-cyano-3nitrobenzoate ligated) $(0.019 \mathrm{~g}, 0.018 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The reaction vessel was placed under an atmosphere of argon, and anhydrous THF $(0.90 \mathrm{~mL}), \mathbf{8}(0.051 \mathrm{~g}, 0.180 \mathrm{mmol})$, allyl acetate ($0.039 \mathrm{~mL}, 0.360 \mathrm{mmol}, 2$ equiv) and 2-propanol ($0.028 \mathrm{~mL}, 0.360 \mathrm{mmol}, 2$ equiv) were added by syringe. The reaction vessel was sealed and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ and was monitored by TLC. After 16 h , the mixture was allowed to reach rt and was concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate 4:1) to give $9(0.042 \mathrm{~g}, 72 \%)$ as a slightly yellow oil.
$[\boldsymbol{\alpha}]^{24} \mathrm{D}-64.4\left(\mathrm{c} 1.28, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 2 \mathrm{H})$, 5.80 (dddd, $J=20.3,9.7,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J$
$=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.68-$ $3.61(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73$ $-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,142.6,135.1,130.6,129.6,129.6,128.6,127.7,126.9$, $117.9,113.9,81.4,70.7,70.3,55.4,42.0,34.6,33.4$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na} 349.1780$; Found 349.1781;
IR (film, DCM) 3442, 3079, 2932, 2862, 1641, 1613, $1512 \mathrm{~cm}^{-1}$.

(4S,7S)-7-((4-methoxybenzyl)oxy)-7-phenylhept-1-en-4-ol (SI-3). Prepared via adaptation of procedure from ${ }^{\mathrm{R} 1}$.

An oven-dried vacuum Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.033 \mathrm{~g}, 0.10 \mathrm{mmol}, 12 \mathrm{~mol} \%)$ and Krische Ir Catalyst ((R)-SEGPHOS, 4-cyano-3nitrobenzoate ligated) $(0.088 \mathrm{~g}, 0.09 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The reaction vessel was placed under an atmosphere of argon, and anhydrous THF (4.25 mL), $\mathbf{8}(0.242 \mathrm{~g}, 0.85 \mathrm{mmol})$, allyl acetate ($0.183 \mathrm{~mL}, 1.70 \mathrm{mmol}, 2$ equiv) and 2-propanol ($0.130 \mathrm{~mL}, 1.70 \mathrm{mmol}, 2$ equiv) were added by syringe. The reaction vessel was sealed and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ and was monitored by TLC. After 16 h , the mixture was allowed to reach rt and was concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate 4:1) to give SI-3 ($0.214 \mathrm{~g}, 77 \%$) as a slightly yellow oil.
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 3}} \mathbf{D} \mathbf{- 7 9 . 7}\left(\mathrm{c} 1.31, \mathrm{CHCl}_{3}\right) ;\right.$
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H})$, $5.86-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dd, $J=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.27-$ $2.09(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,142.6,135.1,130.5,129.6,128.6,127.7,126.9,117.9$, 113.9, 81.1, 70.8, 70.2, 55.4, 42.1, 34.9, 33.4;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na} 349.1780$; Found 349.1782;

IR (film, DCM) 3423, 3072, 3030, 3003, 2932, 2863, 1640, 1612, 1586, $1513 \mathrm{~cm}^{-1}$.

4,4'-((((1S,4S)-1-phenylhept-6-ene-1,4-diyl)bis(oxy))bis(methylene))bis(methoxybenzene) (10).
$\mathrm{NaH}(60 \%$ dispersion in mineral oil) $(0.052 \mathrm{~g}, 1.30 \mathrm{mmol}, 2$ equiv) was added to a flask containing SI-3 ($0.212 \mathrm{~g}, 0.65 \mathrm{mmol}$) and TBAI ($0.024 \mathrm{~g}, 0.07 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in anhydrous DMF $(1.30 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$. Reaction mixture was flushed with argon and stirred for 30 min at $0^{\circ} \mathrm{C}$. Then, 4-methoxybenzyl chloride ($0.176 \mathrm{~mL}, 1.30 \mathrm{mmol}, 2$ equiv) was added dropwise and the mixture was stirred at rt. The reaction was monitored by TLC and after 20 h the mixture was quenched by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with ethyl acetate. Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate 95:5) to give $\mathbf{1 0}(0.272 \mathrm{~g}$, 94%) as a colorless oil.
$[\boldsymbol{\alpha}]^{23}{ }^{\mathbf{D}}-58.1\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 4 \mathrm{H})$, 5.79 (ddt, $J=17.2,10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.33(\mathrm{~m}$, $3 \mathrm{H}), 4.24(\mathrm{dd}, J=7.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.44-$ $3.32(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.39(\mathrm{~m}$, 1H);
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,159.2,142.8,135.1,131.2,130.9,129.5,129.4,128.5$, $127.6,127.0,116.9,113.9,80.9,77.8,70.6,70.1,55.4,38.3,33.9,29.9$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na} 469.2355$; Found 469.2357;
IR (film, DCM) 3063, 3030, 3001, 2934, 2861, 2836, 1612, 1585, $1513 \mathrm{~cm}^{-1}$.

(4R,7S)-4,7-bis((4-methoxybenzyl)oxy)-7-phenylheptan-1-ol (11)
To a solution of $\mathbf{1 0}(0.277 \mathrm{~g}, 0.62 \mathrm{mmol})$ in anhydrous THF (2.86 mL) was added drop-wise 9borabicyclo[3.3.1]nonane solution (0.5 M in THF) ($3.72 \mathrm{~mL}, 1.86 \mathrm{mmol}, 3$ equiv) over 10 min and the mixture was heated under reflux for 1 h . After cooling the reaction mixture was treated with ethanol (1.90 mL), 2 M NaOH solution $\left(0.95 \mathrm{~mL}\right.$) and $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ($30 \%(\mathrm{w} / \mathrm{w})$ in $\mathrm{H}_{2} \mathrm{O}$) $(0.95 \mathrm{~mL})$ and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h . The reaction was monitored by TLC and upon completion sat. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution and $\mathrm{Et}_{2} \mathrm{O}$ were added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate 7:3) to give $\mathbf{1 1}(0.243 \mathrm{~g}, 84 \%)$ as a colorless oil.
$[\boldsymbol{\alpha}]^{19} \mathbf{D}-36.7\left(\mathrm{c} 1.21, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 4 \mathrm{H})$, $6.90-6.83(\mathrm{~m}, 4 \mathrm{H}), 4.42-4.33(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{dd}, J=7.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 2 \mathrm{H})$, $1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.42(\mathrm{~m}, 5 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,159.3,142.7,130.9,130.8,129.5,128.6,127.7,127.0$, $113.9,113.9,81.1,78.2,70.5,70.1,63.1,55.4,55.4,33.8,30.3,29.6,28.7$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Na} 487.2460$; Found 487.2455;
IR (film, DCM) 3413, 3060, 3030, 3000, 2936, 2863, 1612, 1586, $1513 \mathrm{~cm}^{-1}$.

(4S,7S)-4,7-bis((4-methoxybenzyl)oxy)-7-phenylheptanal (12)
To a solution of $\mathbf{1 1}(0.107 \mathrm{~g}, 0.23 \mathrm{mmol})$ in anhydrous DCM (1.15 mL) were added molecular sieves $4 \AA$ (beads) $(0.115 \mathrm{~g})$ and pyridinium chlorochromate ($0.099 \mathrm{~g}, 0.46 \mathrm{mmol}, 2$ equiv) and the mixture was stirred at rt . The reaction was monitored by TLC and after $1.5 \mathrm{~h} \mathrm{Et}_{2} \mathrm{O}(1.15$
mL) was added. After 30 min of intensive stirring the mixture was filtered through a Celite plug, which was thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography (hexane/ethyl acetate $85: 15$) to give $\mathbf{1 2}(0.087 \mathrm{~g}, 82 \%)$ as a colorless oil. $[\boldsymbol{\alpha}]^{19} \mathbf{D}-31.2\left(\mathrm{c} 1.12, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.70(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.16(\mathrm{~m}$, $4 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 4 \mathrm{H}), 4.42-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (dd, $J=7.8,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{td}, J$ $=7.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,159.3,159.3,142.6,130.8,129.5,128.6,127.7,127.0$, $113.9,113.9,80.9,77.2,70.5,70.1,55.4,55.4,40.0,33.7,29.7,26.3$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O} 5 \mathrm{Na} 485.2304$; Found 485.2295;
IR (film, DCM) 3030, 3001, 2935, 2862, 2837, 1722, 1612, 1585, $1513 \mathrm{~cm}^{-1}$.

Section S8. Determination of absolute configuration of newly formed stereogenic centers (Mosher ester analysis)

General procedure GP-1. Procedure adapted from ${ }^{\text {R6 }}$.
Alcohol (1 equiv) was transferred to a screw-capped 4 mL glass vial and anhydrous DCM ($c=$ 0.07 M) was added followed by addition of anhydrous pyridine (3.1 equiv) and (R) - or (S)-MTPA-Cl (1.9 equiv). The vial was sealed and the mixture was stirred at rt for 12 h . Upon completion, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and water was added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Crude product was purified by flash column chromatography.

(S)-1-phenylbut-3-en-1-yl (S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (SI-4).

According to general procedure GP-1, the reaction was performed with compound SI-1 (10 $\mathrm{mg}, 0.07 \mathrm{mmol}$). After purification by flash column chromatography (hexane/ethyl acetate 20:1) Mosher ester SI-4 was obtained ($21 \mathrm{mg}, 85 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 7 \mathrm{H}), 6.03(\mathrm{dd}, J=8.1,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddt}, J=17.2,10.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{q}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, 2.70 (dddt, $J=14.4,8.3,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dddt, $J=14.4,6.9,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$.

(S)-1-phenylbut-3-en-1-yl (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (SI-5).

According to general procedure GP-1, the reaction was performed with compound SI-1 (10 $\mathrm{mg}, 0.07 \mathrm{mmol}$). After purification by flash column chromatography (hexane/ethyl acetate 20:1) Mosher ester SI-5 was obtained ($23 \mathrm{mg}, 94 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H})$, 5.97 (dd, $J=8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (ddt, $J=17.1,10.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.54$ (q, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.74 (dddt, $J=14.6,8.4,7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.61(\mathrm{dddt}, J=14.6,6.7,5.4,1.3$ $\mathrm{Hz}, 1 \mathrm{H})$.

Table S1. $\Delta \delta\left(=\delta_{S}-\delta_{R}\right)$ data for the (S)-MTPA Mosher ester SI-4 and (R)-MTPA Mosher ester SI-5

	$\begin{aligned} & \delta(S) \text {-ester } \\ & \text { SI-4 (ppm) } \end{aligned}$	$\delta(R)$-ester SI-5 (ppm)	$\Delta \delta^{\text {SR }}\left(=\delta_{S}-\delta_{R}\right)$	
			ppm	Hz (500 MHz)
H-1	6.03	5.97	0.06	30
$\mathrm{H}-2 \mathrm{~b}$	2.58	2.61	-0.03	-15
H-2a	2.70	2.74	-0.04	-20
$\mathrm{H}-4_{\mathrm{a}}$ \& $\mathrm{H}-4_{\mathrm{b}}$	5.01	5.12	-0.11	-55
H-3	5.61	5.74	-0.13	-65

Figure S5. Conformational analysis of each of the diastereoisomeric MTPA esters of SI-4 and SI-5. Gray arrow indicates the phenyl group shielding effect.

(4S,8S)-8-((4-methoxybenzyl)oxy)-8-phenyloct-1-en-4-yl (S)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (SI-6).

According to general procedure GP-1, the reaction was performed with compound SI-2 (14 $\mathrm{mg}, 0.04 \mathrm{mmol}$). After purification by flash column chromatography (hexane/ethyl acetate 95:5) Mosher ester SI-6 was obtained ($20 \mathrm{mg}, 87 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{ddt}, J=19.3,9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{p}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{td}, J=6.4,5.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80$ (dddd, $J=13.2,10.2,7.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.16$ (m, 1H).

(4S,8S)-8-((4-methoxybenzyl)oxy)-8-phenyloct-1-en-4-yl (R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (SI-7).

According to general procedure GP-1, the reaction was performed with compound SI-2 (14 $\mathrm{mg}, 0.04 \mathrm{mmol}$). After purification by flash column chromatography (hexane/ethyl acetate 95:5) Mosher ester SI-7 was obtained ($19 \mathrm{mg}, 83 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.58$ (ddt, $J=17.3,10.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{p}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=7.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{td}, J=6.5,5.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.86$ (dddd, $J=13.0,10.2,7.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.32$ (dddd, J $=16.0,12.3,10.2,5.9 \mathrm{~Hz}, 1 \mathrm{H})$.

Table S2. $\Delta \delta\left(=\delta_{S}-\delta_{R}\right)$ data for the (S)-MTPA Mosher ester SI-6 and (R)-MTPA Mosher ester

SI-7

	$\begin{aligned} & \delta(S) \text {-ester } \\ & \text { SI-6 }(\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & \delta(R) \text {-ester } \\ & \text { SI-7 }(\mathrm{ppm}) \\ & \hline \end{aligned}$	$\Delta \delta^{\text {SR }}\left(=\delta_{S}-\delta_{R}\right)$	
			ppm	$\mathrm{Hz}(600 \mathrm{MHz})$
H-2	5.72	5.58	0.14	84
$\mathrm{H}-1_{\mathrm{a}} \& \mathrm{H}-1_{\mathrm{b}}$	5.08	4.98	0.10	60
$\mathrm{H}-3 \mathrm{a} \& \mathrm{H}-3 \mathrm{~b}$	2.37	2.29	0.08	48
OMe	3.50	3.45	0.05	30
H-4	5.12	5.09	0.03	18
OMe (PMB)	3.80	3.80	0.00	0
$\mathrm{CH}_{2} \mathrm{Ar}$ (PMB)	4.36	4.38	-0.02	-12
$\mathrm{CH}_{2} \mathrm{Ar}$ (PMB)	4.14	4.16	-0.02	-12
H-7	1.80	1.86	-0.06	-36
H-8	4.17	4.24	-0.07	-42

Figure S6. Conformational analysis of each of the diastereoisomeric MTPA esters of SI-6 and SI-7. Gray arrow indicates the phenyl group shielding effect.

(4R,7S)-7-((4-methoxybenzyl)oxy)-7-phenylhept-1-en-4-yl (S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (SI-8).

According to general procedure GP-1, the reaction was performed with compound 9 (13 mg , 0.04 mmol). After purification by flash column chromatography (hexane/ethyl acetate 95:5) Mosher ester SI-8 was obtained (18 mg, 83\%) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H})$, $6.89-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.65-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{q}$, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}$, $1 \mathrm{H})$.

(4R,7S)-7-((4-methoxybenzyl)oxy)-7-phenylhept-1-en-4-yl (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (SI-9).

According to general procedure GP-1, the reaction was performed with compound 9 (10 mg , 0.03 mmol). After purification by flash column chromatography (hexane/ethyl acetate 95:5) Mosher ester SI-9 was obtained ($14 \mathrm{mg}, 86 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 4 \mathrm{H})$, $6.88-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{q}$, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.43(\mathrm{~m}$, 2 H).

Table S3. $\Delta \delta\left(=\delta_{S}-\delta_{R}\right)$ data for the (S)-MTPA Mosher ester SI-8 and (R)-MTPA Mosher ester SI-9

	$\begin{aligned} & \delta(S) \text {-ester } \\ & \text { SI-8 (ppm) } \\ & \hline \end{aligned}$	$\begin{aligned} & \delta(R) \text {-ester } \\ & \text { SI-9 }(\mathrm{ppm}) \\ & \hline \end{aligned}$	$\Delta \delta^{\text {SR }}\left(=\delta_{S}-\delta_{R}\right)$	
			ppm	Hz (400 MHz)
H-7	4.24	4.15	0.09	36
$\mathrm{CH}_{2} \mathrm{Ar}$ (PMB)	4.38	4.34	0.04	16
$\mathrm{CH}_{2} \mathrm{Ar}$ (PMB)	4.16	4.12	0.04	16
OMe (PMB)	3.80	3.80	0.00	0
H-4	5.13	5.15	-0.02	-8
OMe	3.49	3.52	-0.03	-12
H-3a \& ${ }_{\text {d }}-3 \mathrm{~b}$	2.31	2.38	-0.07	-28
$\mathrm{H}-1_{\mathrm{a}} \& \mathrm{H}-1_{\mathrm{b}}$	4.98	5.07	-0.09	-36
H-2	5.59	5.71	-0.12	-48

Figure S7. Conformational analysis of each of the diastereoisomeric MTPA esters of SI-8 and SI-9. Gray arrow indicates the phenyl group shielding effect.

(4S,7S)-7-((4-methoxybenzyl)oxy)-7-phenylhept-1-en-4-yl (S)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (SI-10).

According to general procedure GP-1, the reaction was performed with compound SI-3 (36 $\mathrm{mg}, 0.11 \mathrm{mmol}$). After purification by flash column chromatography (hexane/ethyl acetate 95:5) Mosher ester SI-10 was obtained ($54 \mathrm{mg}, 90 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.77-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.04$ (m, 2H), 4.37 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (dd, $J=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{q}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.44-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.45(\mathrm{~m}$, $2 \mathrm{H})$.

(4S,7S)-7-((4-methoxybenzyl)oxy)-7-phenylhept-1-en-4-yl (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (SI-11).

According to general procedure GP-1, the reaction was performed with compound SI-3 (29 $\mathrm{mg}, 0.09 \mathrm{mmol}$). After purification by flash column chromatography (hexane/ethyl acetate 95:5) Mosher ester SI-11 was obtained ($45 \mathrm{mg}, \mathbf{9 2 \%}$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H})$, $6.90-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.64-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.92(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{q}$, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.56(\mathrm{~m}, 2 \mathrm{H})$.

Table S4. $\Delta \delta\left(=\delta_{S}-\delta_{R}\right)$ data for the (S)-MTPA Mosher ester SI-10 and (R)-MTPA Mosher ester SI-11.

	$\begin{gathered} \delta(S) \text {-ester } \\ \text { SI-10 }(\text { ppm }) \end{gathered}$	$\begin{gathered} \delta(R) \text {-ester } \\ \text { SI-11 (ppm) } \end{gathered}$	$\Delta \delta^{\text {SR }}\left(=\delta_{S}-\delta_{R}\right)$	
			ppm	Hz (400 MHz)
H-2	5.70	5.58	0.12	48
$\mathrm{H}-1_{\mathrm{a}} \& \mathrm{H}-1_{\mathrm{b}}$	5.07	4.97	0.10	40
$\mathrm{H}-3 \mathrm{a}$ \& $\mathrm{H}-3_{\mathrm{b}}$	2.37	2.30	0.07	28
OMe	3.53	3.49	0.04	16
H-4	5.16	5.15	0.01	4
OMe (PMB)	3.81	3.81	0.00	0
$\mathrm{CH}_{2} \mathrm{Ar}$ (PMB)	4.37	4.39	-0.02	-8
$\mathrm{CH}_{2} \mathrm{Ar}$ (PMB)	4.13	4.16	-0.03	-12
H-7	4.22	4.29	-0.07	-28

Figure S8. Conformational analysis of each of the diastereoisomeric MTPA esters of SI-10 and SI-11. Gray arrow indicates the phenyl group shielding effect.

Section S9. Iterative synthesis of monhexocin's fragment

Scheme S3. Iterative synthesis towards monhexocin.
Reagents and conditions: (g) L-proline, PhNO, allyl bromide, NaI, TBAI, DMF, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 59-$ 62%, (h) $\mathrm{Zn}, \mathrm{AcOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}, 91-99 \%$, (i) PMBCl, NaH, TBAI, DMF, $0^{\circ} \mathrm{C}$ to rt, $17 \mathrm{~h}, 88 \%$, (j) Rh(CO) $)_{2}$ acac, 6-DPPon, TBAI, Ac $2 \mathrm{O}, \mathrm{HCOOH}, \mathrm{MS} 4 \AA$, DMF, $80^{\circ} \mathrm{C}, 20 \mathrm{~h}, 39-$ 61%, (k) PhCHO, CSA, MS $4 \AA, \mathrm{PhH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 37 \%$.

$(4 R, 5 R)-5-(($ phenylamino)oxy $)$ heptadec-1-en-4-ol (13). Prepared via adaptation of procedure from ${ }^{\mathrm{R} 7}$.

To a solution of 1-tetradecanal ($1.7 \mathrm{~g}, 8 \mathrm{mmol}, 3$ equiv) in anhydrous DMF (30 mL), L-proline ($921 \mathrm{mg}, 8 \mathrm{mmol}$) was added and stirred at rt for 1 h . Then, nitrosobenzene ($285 \mathrm{mg}, 2.67 \mathrm{mmol}$, 1 equiv) was added. The endpoint of the reaction was monitored by its color change from green to orange. After 45 min , the solution was cooled to $0^{\circ} \mathrm{C}$ and allylindium iodide solution (prepared by heating for 1 h at $70^{\circ} \mathrm{C}$: granular indium ($916 \mathrm{mg}, 8 \mathrm{mmol}$), $\mathrm{NaI}(1.2 \mathrm{~g}, 8 \mathrm{mmol}$), allyl bromide ($1.38 \mathrm{~mL}, 16 \mathrm{mmol})$ and anhydrous DMF $(10 \mathrm{~mL})$) was slowly added. The stirring was kept at $0{ }^{\circ} \mathrm{C}$ for 2 h . It was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Crude product was purified by column chromatography (hexane/ethyl acetate 9:1) to give two diastereoisomeric products as yellow oils with 59% yield for syn-configured product 13 (faster-eluting diastereoisomer) and 40% yield for anti-
configured product (slower-eluting diastereoisomer). The diastereomeric ratio of the products were determined by preparing Mosher esters of slower-eluting diastereoisomer (analysis below).
$[\boldsymbol{\alpha}]^{21}{ }^{1} 19.17\left(\mathrm{c} 0.9, \mathrm{C}_{6} \mathrm{H}_{6}\right)$;
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.13(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 2 \mathrm{H})$, $2.39-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, 19H), 0.88 (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (125 MHz, CDCl_{3}) $\delta 148.3,134.7,129.0,122.5,117.8,115.1,85.5,72.7,38.2,31.9$, $29.8,29.7,29.6,29.6,29.5,29.5,29.3,25.6,22.7,14.1$;

IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 3270, 3075, 2925, 2853, 1643, 1603, 1522, 1495, 1466, 1360, 1280, 1183, 1166, 1145, 1111, 1051, 1026, 997, 913, 822, 769, 741, $694 \mathrm{~cm}^{-1}$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{50} \mathrm{NO}_{2} 362.3059$; Found 362.3057.

(4S,5R)-5-((phenylamino)oxy)heptadec-1-en-4-yl (S)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (SI-12).

According to general procedure GP-1, the reaction was performed with diastereoisomer of compound $\mathbf{1 3}$ ($20 \mathrm{mg}, 0.055 \mathrm{mmol}$). After purification by flash column chromatography (hexane/ethyl acetate 95:5) Mosher ester SI-12 was obtained ($27 \mathrm{mg}, 84 \%$) as a white solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.26(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.68-6.57(\mathrm{~m}$, $4 \mathrm{H}), 6.03-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{brs}, 1 \mathrm{H})$, $4.18(\mathrm{brs}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.13(\mathrm{~m}, 16 \mathrm{H}), 1.11-1.03(\mathrm{~m}, 3 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.89-$ $0.86(\mathrm{~m}, 3 \mathrm{H})$.

(4S,5R)-5-((phenylamino)oxy)heptadec-1-en-4-yl (R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoate (SI-13).

According to general procedure GP-1, the reaction was performed with diastereoisomer of compound 13 ($20 \mathrm{mg}, 0.055 \mathrm{mmol}$). After purification by flash column chromatography (hexane/ethyl acetate 95:5). Mosher ester SI-13 was obtained ($23 \mathrm{mg}, 72 \%$) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.58(\mathrm{dd}, J=6.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=5.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{brs}, 2 \mathrm{H}), 6.44(\mathrm{brs}, 1 \mathrm{H}), 5.98-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90$ (brs, 1 H), 4.15 (brs, 1 H), 3.44 (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (brs, 3 H), 2.46 (brs, 1H), $2.02-1.87$ (m, 2H), $1.32-1.20$ (m, 16H), 1.15 (brs, 3 H), 0.96 (brs, 2H), $0.91-0.85(\mathrm{~m}, 3 \mathrm{H})$.

Table S5. $\Delta \delta\left(=\delta_{S}-\delta_{R}\right)$ data for the (S)-MTPA Mosher ester SI-12 and (R)-MTPA Mosher ester SI-13

	$\begin{gathered} \delta(S) \text {-ester } \\ \text { SI-12 (ppm) } \end{gathered}$	$\begin{gathered} \delta(R) \text {-ester } \\ \text { SI-13 (ppm) } \end{gathered}$	$\Delta \delta^{\text {SR }}\left(=\delta_{S}-\delta_{R}\right)$	
			ppm	$\mathrm{Hz}(400 \mathrm{MHz})$
H-5	3.70	3.49	0.21	84
H-3a	2.10	1.98	0.12	48
H-1	5.06	5.04	0.02	8
$\mathrm{H}-3 \mathrm{~b}$	2.53	2.51	0.02	8
H-2	5.96	5.96	0	0
H-4	4.18	4.19	-0.01	-4
$\mathrm{H}-\mathrm{G}_{\mathrm{b}}$	1.35	1.36	-0.01	-4
H-17	0.87	0.93	-0.06	-24
Alkyl chain	1.24	1.30	-0.06	-24
$\mathrm{H}-\mathrm{b}_{\mathrm{a}}$	1.87	1.98	-0.11	-44
-NHPh	6.79	7.06	-0.27	-108
-NHPh	4.63	4.94	-0.31	-124
-NHPh	7.25	7.62	-0.37	-148

(4R,5R)-heptadec-1-ene-4,5-diol (SI-14). Prepared under conditions from ${ }^{\text {R8 }}$.
Diastereoisomer 13 ($550 \mathrm{mg}, 1.52 \mathrm{mmol}$) was dissolved in a $1: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture (22 mL). Acetic acid (33.5 mL) and Zn dust ($3.78 \mathrm{~g}, 57 \mathrm{mmol}$) was added. The mixture was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of silica gel, which was washed by $\mathrm{Et}_{2} \mathrm{O}$. After evaporation of the solvents, the resulting crude mixture was redissolved in EtOAc, preadsorbed on silica gel and purified by column chromatography (hexane/ethyl acetate 4:1) to give SI-14 (374 mg, 91\%) as a white solid.
$[\boldsymbol{\alpha}]^{\mathbf{2 1}} \mathbf{D} 7.28\left(\mathrm{c} 2.4, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.13(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 2 \mathrm{H})$, $2.39-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $19 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.5,118.2,73.9,73.2,38.3,33.6,31.9,29.7,29.6,29.6,29.6$, 29.6, 29.3, 25.6, 22.7, 14.1;

IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 3193, 2916, 2848, 1643, 1469, 1436, 1281, 1065, 989, 915, 872, $718 \mathrm{~cm}^{-1}$;
HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{Na} 293.2408$; Found 293.2416.

4,4'-((((4R,5R)-heptadec-1-ene-4,5-diyl)bis(oxy))bis(methylene))bis(methoxybenzene) (14).
$\mathrm{NaH}(60 \%$ dispersion in mineral oil, $213 \mathrm{mg}, 5.32 \mathrm{mmol}, 4$ equiv) was added to a flask containing SI-14 ($360 \mathrm{mg}, 1.33 \mathrm{mmol}$) and TBAI ($25 \mathrm{mg}, 0.067 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in anhydrous DMF (15 mL) cooled to $0^{\circ} \mathrm{C}$. Reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then, PMBCl ($0.72 \mathrm{~mL}, 5.32 \mathrm{mmol}, 4$ equiv) was added dropwise and the mixture was stirred at rt for 17 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction followed by the extraction with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Crude
product was purified by column chromatography (hexane/ethyl acetate 95:5) to give $\mathbf{1 4}$ (598 $\mathrm{mg}, 88 \%$, >99\% ee by HPLC analysis) as a colorless oil.

HPLC (Chiralcel OD-H, hexane $/ i-\operatorname{PrOH} 99.5: 0.5$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda 220 \mathrm{~nm}$): $t_{\mathrm{R}}=8.1 \mathrm{~min}$ $(S, S), t_{\mathrm{R}}=8.4 \mathrm{~min}(S, R), t_{\mathrm{R}}=9.0 \mathrm{~min}(R, R), t_{\mathrm{R}}=13.7 \mathrm{~min}(R, S) ;$
$[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}-1.36\left(\mathrm{c} 2.1, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 4 \mathrm{H}), 5.90-5.78(\mathrm{~m}, 1 \mathrm{H})$, $5.12-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.43(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.50(\mathrm{dt}, J=7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dt}$, $J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.34$ (m, 2H), 1.26 (m, 20H), $0.92-0.86(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,135.8,131.1,131.0,129.5,129.5,116.5,113.7,79.7$, $79.6,72.3,72.1,55.3,34.7,31.9,29.9,29.8,29.7,29.7,29.7,29.6,29.4,25.9,22.7,14.1$;

IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 3072, 2999, 2925, 2853, 2063, 1739, 1640, 1612, 1586, 1513, 1464, 1357, 1302, 1248, 1174, 1089, 1038, 912, $822 \mathrm{~cm}^{-1}$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Na} 533.3607$; Found 533.3588 .

(5R,6R)-5,6-bis((4-methoxybenzyl)oxy)octadecanal (15).
Mixture of catalyst $\mathrm{Rh}(\mathrm{CO})_{2}$ acac ($30 \mathrm{mg}, 0.115 \mathrm{mmol}, 10 \mathrm{~mol} \%$), ligand 6-DPPon ($64 \mathrm{mg}, 0.23$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$), additive TBAI ($10.6 \mathrm{mg}, 0.029 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$), $4 \AA$ molecular sieves and anhydrous DMF (8 mL) was stirred in an ampule flushed with argon. Then $\mathbf{1 4}(585 \mathrm{mg}, 1.15$ mmol) dissolved in anhydrous DMF (8 mL) was added, stirred at rt for 5 min and $\mathrm{Ac}_{2} \mathrm{O}$ (653 $\mu \mathrm{L}, 6.9 \mathrm{mmol}, 6$ equiv) and $\mathrm{HCOOH}(340 \mu \mathrm{~L}, 8.97 \mathrm{mmol}, 7.8$ equiv) were successively added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 h . It was then cooled to rt and poured directly on silica gel. Column chromatography (hexane/ethyl acetate 9:1) afforded aldehyde 15 (378 $\mathrm{mg}, 61 \%$) as a brownish oil.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}} 13.15\left(\mathrm{c} 1.57, \mathrm{CHCl}_{3}\right) ;$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 9.29(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=13.1,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.79(\mathrm{dd}$, $J=8.6,5.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.51(\mathrm{dd}, J=11.4,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=26.3,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 6 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.38(\mathrm{~m}, 7 \mathrm{H}), 1.34$ $-1.20(\mathrm{~m}, 20 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 200.3,159.4,131.4,131.2,129.3,129.3,113.7,79.5,79.3,72.1$, $72.0,54.4,43.6,32.0,30.0,29.9,29.8,29.8,29.4,29.3,26.3,22.7,18.7,14.0$;

IR (film, CHCl_{3}); 2999, 2925, 2853, 2717, 2062, 1724, 1612, 1586, 1513, 1463, 1359, 1302, 1248, 1174, 1070, 1037, 821 cm^{-1};

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Na} 563.3712$; Found 563.3706.

($5 R, 8 R, 9 R)-8,9-$ bis((4-methoxybenzyl)oxy)-5-((phenylamino)oxy)henicos-1-en-4-ol (16). Prepared via adaptation of procedure from ${ }^{\mathrm{R} 7}$.

To a solution of aldehyde 15 ($362 \mathrm{mg}, 0.67 \mathrm{mmol}, 3$ equiv) in anhydrous DMF (2.5 mL), Lproline ($77 \mathrm{mg}, 0.67 \mathrm{mmol}$) was added and stirred at rt for 17 h . Then, nitrosobenzene (24 mg , 0.223 mmol , 1 equiv) was added. The endpoint of the reaction was monitored by its color change from green to orange. After 1.5 h , the solution was cooled to $0^{\circ} \mathrm{C}$ and allylindium iodide solution (prepared by heating for 1 h at $70{ }^{\circ} \mathrm{C}$: granular indium ($73 \mathrm{mg}, 0.67 \mathrm{mmol}$), $\mathrm{NaI}(95$ $\mathrm{mg}, 0.67 \mathrm{mmol})$, allyl bromide ($110 \mu \mathrm{~L}, 1.27 \mathrm{mmol}$) and anhydrous DMF (1 mL)) was slowly added. The stirring was kept at $0{ }^{\circ} \mathrm{C}$ for 2 h then at rt for 15 h . It was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Crude product was purified by column chromatography (hexane/acetone $85: 15$) to give inseparable $1: 1$ mixture of diastereoisomers 16 ($95 \mathrm{mg}, 62 \%$) as yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 2 \mathrm{H})$, $6.84-6.73(\mathrm{~m}, 6 \mathrm{H}), 5.97-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.45$ (ddd, $J=19.7,11.4,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.32$

- $3.25(\mathrm{~m}, 6 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.17(\mathrm{~m}, 20 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 159.4,159.4,149.1,149.0,135.5,135.3,131.4,131.2,129.4$, 129.4, 129.3, 128.8, 121.8, 121.8, 116.9, 114.8, 114.7, 113.8, 113.8, 113.7, 85.8, 85.4, 79.7, $72.4,72.2,72.1,71.6,59.7,54.4,37.6,32.0,30.0,29.8,29.8,29.4,26.3,24.4,22.7,14.0 ;$

IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 3446, 3267, 2999, 2925, 2853, 2062, 1688, 1640, 1611, 1513, 1494, 1464, $1358,1302,1248,1174,1037,914,821,762 \mathrm{~cm}^{-1}$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{43} \mathrm{H}_{63} \mathrm{NO}_{6} \mathrm{Na} 712.4553$; Found 712.4542.

($5 R, 8 R, 9 R$)-8,9-bis((4-methoxybenzyl)oxy)henicos-1-ene-4,5-diol (SI-15). Prepared under conditions from ${ }^{\text {R8 }}$.

Diastereoisomers 16 ($90 \mathrm{mg}, 0.13 \mathrm{mmol}$) were dissolved in a $1: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture (2 mL). Acetic acid (3 mL) and Zn dust ($296 \mathrm{mg}, 4.48 \mathrm{mmol}$) was added. The mixture was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of silica gel, which was washed by $\mathrm{Et}_{2} \mathrm{O}$. After evaporation of the solvents, the resulting crude mixture was redissolved in EtOAc, preadsorbed on silica gel and purified by column chromatography (hexane/ethyl acetate 3:2) to give SI-15 (77 mg, 99\%) as a colorless oil.
${ }^{1}{ }^{1}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 4 \mathrm{H}), 5.89-5.77(\mathrm{~m}, 1 \mathrm{H})$, $5.17-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.40(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.59-3.32(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{~s}, 2 \mathrm{H}), 2.31$ - 2.10 (m, 2H), $1.80-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 23 \mathrm{H})$, $0.91-0.85(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,159.2,135.1,134.7,130.9,130.5,129.7,129.7,129.5$, $118.0,117.8,113.8,113.8,79.7,79.4,79.4,74.0,73.4,73.2,72.3,72.2,55.3,38.3,36.2,31.9$, $29.8,29.7,29.7,29.7,29.6,29.4,27.9,26.0,22.7,14.1$;

IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 3425, 3073, 2998, 2925, 2853, 2063, 1881, 1708, 1640, 1612, 1586, 1514, $1465,1358,1302,1249,1210,1173,1065,1038,914,822,755 \mathrm{~cm}^{-1}$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{Na} 621.4131$; Found 621.4144.

(2S,4R,5R)-4-allyl-5-((3R,4R)-3,4-bis((4-methoxybenzyl)oxy)hexadecyl)-2-phenyl-1,3dioxolane (SI-16). Prepared under conditions from ${ }^{\text {R9 }}$.

Mixture of diastereoisomers SI-15 (20 mg, 0.033 mmol$)$ was dissolved in $\mathrm{PhH}(0.35 \mathrm{~mL})$ with camphorsulfonic acid ($10 \mathrm{mg}, 0.033 \mathrm{mmol}$) and $4 \AA$ molecular sieves. Solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{PhCHO}(85 \mu \mathrm{~L}, 0.825 \mathrm{mmol})$ was added. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . It was then warmed to rt and poured directly on silica gel. Column chromatography (hexane/ethyl acetate 95:5) afforded threo/threo diastereoisomer SI-16 ($8.5 \mathrm{mg}, 37 \%$) as a colorless oil. Structure was confirmed by NOE experiment.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H), $6.90-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.53$ (dd, $J=8.6,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 5.67-5.58(\mathrm{~m}$, $1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.83-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=11.4,4.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.21(\mathrm{dd}, J=39.4,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 2 \mathrm{H}), 3.03$ $(\mathrm{s}, 6 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.47(\mathrm{~m}, 4 \mathrm{H})$, $1.41-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 20 \mathrm{H}), 0.62(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 159.4,159.4,138.7,135.1,131.4,131.3,129.5,129.3,128.8$, 128.1, 127.9, 127.7, 127.6, 126.9, 116.5, 113.7, 103.1, 79.9, 78.8, 78.7, 78.4, 72.1, 71.8, 54.4, $54.4,34.7,32.0,30.0,29.8,29.8,29.8,29.4,26.7,26.3,26.2,22.7,14.0 ;$

IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 3464, 3070, 2925, 2853, 1745, 1641, 1612, 1586, 1513, 1462, 1376, 1301, 1248, 1173, 1090, 1066, 1037, 916, 821, $758 \mathrm{~cm}^{-1}$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{44} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Na} 709.4443$; Found 709.4444.

4,4',4' $\mathbf{4}^{\prime \prime}{ }^{\prime \prime}-((((5 R, 8 R, 9 R)$-henicos-1-ene-4,5,8,9-

tetrayl)tetrakis(oxy))tetrakis(methylene))tetrakis(methoxybenzene) (17).
$\mathrm{NaH}(60 \%$ dispersion in mineral oil, $15 \mathrm{mg}, 0.368 \mathrm{mmol}, 4$ equiv) was added to a flask containing SI-14 ($55 \mathrm{mg}, 0.092 \mathrm{mmol}$) and TBAI ($1.7 \mathrm{mg}, 4.6 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) in anhydrous DMF (1 mL) cooled to $0^{\circ} \mathrm{C}$. Reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then, $\mathrm{PMBCl}(50$ $\mu \mathrm{L}, 0.368 \mathrm{mmol}, 4$ equiv) was added dropwise and the mixture was stirred at rt for 17 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction followed by the extraction with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Crude product was purified by column chromatography (hexane/ethyl acetate 95:5) to give 17 (68 mg , 88%) as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 8 \mathrm{H}), 5.95-5.76(\mathrm{~m}, 1 \mathrm{H})$, 5.14 - 4.99 (m, 2H), 4.63 - 4.39 (m, 8H), 3.78 (s, 12H), $3.53-3.36$ (m, 4H), 2.45-2.17 (m, $2 \mathrm{H}), 1.88-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 19 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,129.5,129.4,129.3,113.7,71.9,55.2,31.9,30.7,29.8$, 29.7, 29.7, 29.4, 22.7, 14.1;

IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 3070, 2999, 2925, 2853, 2062, 1881, 1612, 1586, 1513, 1464, 1356, 1301, $1248,1173,1087,1037,913,821,756 \mathrm{~cm}^{-1}$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{53} \mathrm{H}_{74} \mathrm{O}_{8} \mathrm{Na}$ 861.5281; Found 861.5273.

(6R,9R,10R)-5,6,9,10-tetrakis((4-methoxybenzyl)oxy)docosanal (18).
Mixture of catalyst $\mathrm{Rh}(\mathrm{CO})_{2}$ acac ($1.8 \mathrm{mg}, 7.2 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$), ligand 6-DPPon ($4 \mathrm{mg}, 14.4$ $\mu \mathrm{mol}, 20 \mathrm{~mol} \%)$, additive TBAI ($0.6 \mathrm{mg}, 1.8 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$), $4 \AA$ molecular sieves and anhydrous DMF (0.6 mL) was stirred in an ampule flushed with argon. Then $17(60 \mathrm{mg}, 0.072$ mmol) dissolved in anhydrous DMF (0.6 mL) was added, stirred at rt for 5 min and $\mathrm{Ac}_{2} \mathrm{O}$ (38.4
$\mu \mathrm{L}, 0.432 \mathrm{mmol}, 6$ equiv) and $\mathrm{HCOOH}(20 \mu \mathrm{~L}, 0.562 \mathrm{mmol}, 7.8$ equiv) were successively added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 20 h . It was then cooled to rt and poured directly on silica gel. Column chromatography (hexane/ethyl acetate 4:1) afforded aldehyde $\mathbf{1 8}$ ($24 \mathrm{mg}, 39 \%$) as a brownish oil.
${ }^{1}{ }^{1}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 9.28-9.25(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 8 \mathrm{H}), 6.81-6.74(\mathrm{~m}, 8 \mathrm{H})$, $4.68-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.53-4.42(\mathrm{~m}, 4 \mathrm{H}), 4.38-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.49(\mathrm{~m}, 3 \mathrm{H}), 3.45-3.38$ (m, 1H), $3.30-3.25(\mathrm{~m}, 12 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 19 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 3 \mathrm{H})$;
${ }^{13}$ C NMR (150 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 200.4,200.4,159.3,131.5,131.4,131.4,131.2,129.3,129.3$, 129.3, 129.2, 129.2, 127.9, 113.7, 113.7, 113.7, 81.1, 80.9, 80.6, 80.5, 80.2, 80.1, 79.3, 72.2, $72.0,71.8,71.8,71.7,71.6,54.4,43.6,43.5,32.0,31.0,30.1,30.0,29.9,29.8,29.8,29.8,29.5$, $29.3,27.5,27.3,27.2,26.5,26.2,26.1,22.7,18.7,18.5,14.0$;

IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 2999, 2925, 2853, 2061, 1882, 1724, 1612, 1586, 1513, 1463, 1356, 1301, 1248, 1174, 1087, 1037, 821, $756 \mathrm{~cm}^{-1}$;

HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{54} \mathrm{H}_{76} \mathrm{O}_{9} \mathrm{Na} 891.5387$; Found 891.5389.

Section S10. Literature precedents of heterocycle-forming reactions.

a)

b)

c)

d)

e)

Figure S9. Literature precedents of heterocycle-forming reactions that are part of iterative sequences from main-text Figure 3. a) Synthesis of isoxazoles via condensation of imidoyl chlorides with active methylene compounds ${ }^{\mathrm{R10}}$; b) Synthesis of oxazoles from isocyanides ${ }^{\text {R11 }}$; c) Synthesis of 1,3,4-oxadiazoles from N-formyl hydrazine ${ }^{\text {R12 }}$; d) Fourcomponent synthesis of pyrroles ${ }^{\mathrm{R} 13}$; e) Synthesis of phenazines from dibromoaarenes ${ }^{\mathrm{R} 14}$.

Section S11. Spectroscopic data

$\#$	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	18,183	29473	1519	1,343	1,534	$\mathrm{~N} / \mathrm{A}$	19798	2,312	1,148	
2	Unknown	1	19,442	2165495	97501	98,657	98,466	$\mathrm{~N} / \mathrm{A}$	18334	$\mathrm{~N} / \mathrm{A}$		1,188

$\#$	Peak Name	CH	tR $[\mathrm{min}]$	Area [$\mu \mathrm{V} \cdot \mathrm{sec}]$	Height $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	18,150	2643690	127332	49,211	50,931	$\mathrm{~N} / \mathrm{A}$	17984	2,297	1,194	
2	Unknown	1	19,433	2728429	122679	50,789	49,069	$\mathrm{~N} / \mathrm{A}$	18026	$\mathrm{~N} / \mathrm{A}$		1,174

Figure S10. HPLC chromatogram of compound SI-1 (top) and racemate of SI-1 (bottom).

Figure S11. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound SI-1.

Figure S12. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 1.

Figure S13. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 2.

Figure S14. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 3.

Figure S15. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound SI-2.

Figure S16. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 4.

Figure S17. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 5.

Figure S18. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 6.

Figure S19. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 7.

Figure S20. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 8.

Figure S21. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 9 .

Figure S22. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound SI-3.

Figure S23. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound $\mathbf{1 0}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 11.

Figure S25. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 12.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of compound SI-4.

Figure S27. ${ }^{1}$ H NMR spectrum of compound SI-5.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of compound SI-6.

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of compound SI-7.

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of compound SI-8.

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of compound SI-9.

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of compound SI-10.

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound SI-11.

Figure S34. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 13.

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectra of compound SI-12.

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectra of compound SI-13.

[^1]Figure S37. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound SI-14.

Figure S38. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 14.

$\#$	Peak Name	CH	tR $[\mathrm{min}]$	Area $[\mu \mathrm{V} \cdot \mathrm{sec}]$	Height $[\mu \mathrm{V}]$	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	8,067	859766	67212	25,409	28,899	$\mathrm{~N} / \mathrm{A}$	6226	0,709	N	
2	Unknown	1	8,358	976141	68870	28,848	29,612	$\mathrm{~N} / \mathrm{A}$	6467	1,874	A	
3	Unknown	1	9,042	790407	65053	23,359	27,971	$\mathrm{~N} / \mathrm{A}$	13152	9,907	$\mathrm{~N} / \mathrm{A}$	
4	Unknown	1	13,650	757437	31438	22,385	13,517	$\mathrm{~N} / \mathrm{A}$	7819	$\mathrm{~N} / \mathrm{A}$	1,202	

Figure S39. HPLC spectra of compound 14 racemate.

Figure S40. HPLC spectra of compound 14.

Figure S41. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 15.

Figure S42. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 16.

Figure S43. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound SI-15.

Figure S44. ${ }^{1} \mathrm{H}$ NMR spectra of compound SI-16.

Figure S45. ${ }^{1} \mathrm{H}$ NMR NOE spectra of compound SI-16.

Figure S46. ${ }^{13} \mathrm{C}$ NMR spectra of compound SI-16.

Figure S47. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 17.

Figure S48. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}$ NMR (bottom) spectra of compound 18.

Section S12. User Manual for Allchemy's "Iterator" module

S12.1. Basic Information

Allchemy's "Iterator" module is freely available to academic users at https://iterator.allchemy.net. For optimal performance, we recommend using Google Chrome or other web-browsers supporting SVG2. To register a new account, send an e-mail to admin@allchemy.net from your academic address. Each user should create individual account. To start using the software, please log in using a valid username and password. After logging in you will see a window providing some technical information. Due to limited capacity of our servers and the fact that iterative searches can easily explode for large number of products (especially when larger numbers of substrates are used) the searches are limited to three iterative loops and three additional, user defined starting materials.

The main control panel visible after logging in is divided into three sections: the first one enables starting new searches (A in Figure S49; described in detail in Section S12.2), the second tab allows for displaying recent results and currently performed operations (B in Figure S49; described further in Section S12.3), while the third one provides access to the previously stored results (C in Figure S49; described further in Section S12.4).

Figure S49. Main control panel of Allchemy's "Iterator" module. a, Setting up a new search is available under "New search" (A) tab; b, Preview of currently performed operations (including checking the position in server's calculation queue and termination of searches) is available under "Results" (B) tab. When no calculations are currently performed, the last calculation's results are displayed; \mathbf{c}, Results of the previously performed searches can be retrieved under "Saved results" (C) tab; d, Selection of iterative sequences; \mathbf{e}, Panel for adding user-specified building blocks. Adding up to three additional substrates to the calculation is allowed; f, Preview of currently selected substrates; \mathbf{g},) Number of iterations to be performed; h, Launch "Search" button

S12.2 Starting a new search

Starting a new calculation requires:
i) Choosing types of iterative sequences to be used during network generation (button \mathbf{D} in Figure S49). The user may select up to three sequences from the displayed list (Figure S50a). Once these sequences are selected, their background will change color to light blue. After selecting desired sequences, push "Apply" button to confirm selection.
ii) Selecting proper building blocks/reagents for selected iterative sequence(s)

Note 1: For user's convenience, basic set of appropriate reagents will be proposed automatically for each iterative sequence selected (Figure S50b).

- The user can remove some of the simple starting materials proposed by the software (or replace them with more complicated ones) using "Keep selected" and "Remove selected" controls (I in Figure S50b)
- \quad The user will be asked to confirm the removal operation (Figure S50c). The calculation will not work properly if indispensable substrates are removed (e.g., allylating reagents necessary for Krische's/Brown allylation or carbon monoxide necessary for the hydroformylation step).

Note 2: Optionally, the user can add up to three of his/her own starting materials (\mathbf{E} in Figure S49). The molecules can be added using structure-drawing editor (recommended, one can draw multiple molecules at once) or from SMILES string (separated by full stops). The software checks if the added molecule(s) match any of the selected iterative sequences (non-matching ones will not be added to the list). We recommend previewing the selected molecules (\mathbf{F}) before launching the calculation, especially if the list of reagents was modified.
iii) specifying the number of iterations to be performed (G). User can select up to three iterations to be performed during a single search.
iv) Pushing the "Search" (H) button.

Figure S50. Starting a new search. a, The user is allowed to select up to three types of iterative sequences from the displayed list. The selected sequences are highlighted in light-blue. b, After confirming the choice with "Apply" button, a basic set of matching substrates and reagents is suggested and displayed. User can remove any of the proposed molecules (e.g., to replace them
with more complicated ones) using \mathbf{J} controls. c, Removal of a key reagent will return empty result as the sequence will not be calculated properly. To avoid such outcomes, the user will be asked to confirm the removal operation.

S12.3 Analysis of results

After launching calculations, the user is transferred to the Results (B) tab. The calculation may take from few seconds up to several minutes and the results will be displayed automatically. The search is limited to 30 minutes due to server capacity. Longer calculations will be stopped automatically and already generated results will be returned.

In the default view, results are displayed as a panel of molecular structures (Figure S51). As the number of generated products may be in the thousands, we implemented filtering and sorting functionalities (Figure S51 J and K, respectively) to facilitate their analysis. In particular, the user can sort generated products according to their mass, number of rings, number of stereocenters, etc. using the \mathbf{K} drop-down menu confirming the new choice with "Sort again" button. By default, the molecules are sorted according to their molecular mass. Panel J allows for filtering out products that do not meet user-specified structural criteria (molecular mass, number of rings, number of stereocenters, number of Hbond donor/acceptors, number of basic/acidic groups, number of halogens, Polar Surface Area (PSA), etc.). Additionally, the user can filter out molecules according to the number of substrates used to make them or by substructure. The latter filtering option can be used both for retaining or excluding products containing a specific structural motif. The structural motifs should be input in the SMARTS notation.

Filters are activated by clicking "Apply filters" button (N in Figure S51). To remove any applied filters, the user should use "Clean all filters" button (M). Left-clicking on any structure, will display details of the iterative synthetic pathway leading to this molecule. Each reaction in this plan is accompanied by reaction name, typical conditions, typical solvents and literature references (with DOIs as hyperlinks).

The generated results can be saved under user-specified name using "Save" button (O in Figure S51). These saved results will appear in the "Saved results" tab (C).

Figure S51. Analysis of results. In the default mode, the results are displayed as a panel of molecular structures sorted by molecular mass in descending order. The user may change sorting criteria using drop-down menu K. After changing these sorting criteria, the choice is confirmed by clicking "Sort again" button. Additionally, the user may apply filtering of products according to their masses, numbers of rings, numbers of stereocenters, etc. using list of filters in panel J. The filters are applied by using "Apply filters" \mathbf{N} button whereas removing any applied filters is possible with "Clear all filters" \mathbf{M} button. The results are saved under a user-given name by using "Save" (O) button. To change the view mode to network, the user should use "View as graph" (\mathbf{L}) button.

Finally, the results can be displayed in network format (using L button in Figure S52). In this mode (Figure S52) molecules are represented as nodes. The nodes are layered according to the synthetic generation in which they are produced, with substrates in the first row at the very bottom. Hovering over any node displays a structure of a molecule while left-clicking on any node displays the synthetic pathway leading to this molecule. Right-clicking on the node selects the pathway leading to given molecule or from a given molecule, depending on the chosen selection mode \mathbf{Q}.

Figure S52. Network view of results with molecules represented as nodes. In this view, the substrates are located at the bottom. The user can select the synthetic pathway(s) leading to or from a given compound(s) (mode chosen with \mathbf{Q} control) using right-mouse-button click on any molecule. The selected pathways can be saved as a subgraph using \mathbf{R} control - the saved search appears in the "Saved results" tab (C). Left-mouse button click displays the synthetic pathway leading to a given molecule. Additionally, the \mathbf{P} panel allows for coloring the nodes according to their status (known/present in EPA list/combination of chemical elements), for resizing nodes according to their popularity in the network, or for calculating their similarity to drugs or agrochemicals.

S12.4 Managing results

The results of searches are displayed automatically after being calculated in the Results (B) tab. Any unsaved results calculated during current session are available under "Temporarily stored calculation" in "Saved results" tab (C). These unsaved calculations are permanently lost after logging out. Calculations saved using "Save" button (O) and sub-networksaved using "Save selected as subgraph" (\mathbf{R}) are stored unless deleted by the user.

Saved calculations

```
\squareKrische_1_4 :.. (56 products) show 1 saved subgraph: Krische_1_4_interesting
```

Remove selected results

Temporarily stored calculations

Figure S53. Saved results tab. Calculations are saved in "Saved calculations" section of "Saved results" (C) tab (saving is performed with \mathbf{O} button) under user-given names and are not removed after logging out. The saved subgraphs (saved with \mathbf{R} button) are available close to parent searches. The results stored in "Temporarily stored calculations" section are available only during current session and will be lost after logging out.

Section S13. Selection of conditions for iterative sequences.

d) Reaction name: Tandem Aminoxylation - Allylation of aldehydes followed by reduction
Reaction conditions: proline, DMSO then In , Na a then $\mathrm{Cu}(\mathrm{OAc}) 2, \mathrm{MeOH}$ Solvent: DMSO
Siterature reference: $10.1039 / \mathrm{B} 314356 \mathrm{~B}$ and $10.1055 / \mathrm{s}-0029-1216855$ and 0.1039/C5RA10405

e)
on ether synthesis Reaction conditions: NaOH
Alternative Solvent: DMSO,t-Butyl ethyl ether Literature reference: 10.1021/jm9508245 and 10.1016/S0040-4039(00)92630-3

Reaction name: Hydroformylation of alkenes
Reaction conditions: [Rh]-catalyst, H2, toluene Solvent: toluene
Literature reference: 10.1021/ja0348997 and 10.1002/anie.200462499 and 10.1027/01061312v and 10.1002/chem.200801795
o

Figure S54. Conditions for iterative sequences are sourced from individual reaction rules taught to the computer. This example shows screenshots from a-c, Chematica and d-f, Allchemy programs for individual steps of the iterative synthesis of $1,2,5,6$-polyols via aminoxylation-allylation. Each step lists suggested conditions and provides hyperlinks to illustrative references (please note that Chematica and Allchemy are coded independently of one another and so illustrative literature links are generally not identical). As to the most noticeable adjustments in the computer-proposed conditions, for the cleavage of N-O bond step corresponding to panels (a-Chematica, d-Allchemy), we used the $\mathrm{Zn} / \mathrm{AcOH}$ system to achieve 91% yield while the Cu^{2+} salts (as suggested by Chematica/Allchemy based on, e.g., ${ }^{\mathrm{R} 7}$) produced the desired product in 45% yield. Additionally, the Breit's ${ }^{\text {R15 }}$ catalytic system ($\mathrm{Rh} / 6-$ DPPon) was used rather than the proposed $\mathrm{Rh} /$ Xantphos system, because it allowed us to replace the highly flammable and toxic $\mathrm{H}_{2} / \mathrm{CO}$ mixture with HCOOH as the formylating agent ${ }^{\text {R16 }}$ during hydroformylation of alkenes. Finally, in this and other examples from Figure 5, we used the NaH in DMF as a base for protection of secondary alcohols with PMBCl rather than $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone proposed by Chematica.

d) Reaction name: Krische allylation Reaction conditions: [rr]-catalyst, Cs2CO3, iPrOH, THF Solvent: THF Alternative Solvent: t-Butyl ethyl ether Literature reference: 10.1021/ja805722e and 10.1021/ja802001b

e) Reaction name: Williamson ether synthesis Reaction conditions: NaOH
Alternative Solvent: DMSO,t-Butyl ethyl ether
Literature reference: 10.1021/jm9508245 and 10.1016/S0040-4039(00)92630-3

f) Reaction name: Hydrocyanation of alkenes
Reaction conditions: $\mathrm{NiCl}_{2}{ }^{*} 6 \mathrm{H} 2 \mathrm{O}, \mathrm{dppp}, \mathrm{Zn}, \mathrm{DMF}, 90 \mathrm{deg} \mathrm{C}$ Solvent: DMF
Alternative Solvent: DMSO

g) Reaction name: Reduction of nitriles to aldehydes Reaction conditions: DIBAL, toluene Solvent: toluene or DCM or THF or hexane Literature reference: 10.1002/anie.200704095 and 10.1002/ejoc.200390130

Figure S55. Conditions for iterative sequences are sourced from individual reaction rules taught to the computer. This example shows screenshots from a-d, Chematica and e-g, Allchemy programs for individual steps of the iterative synthesis of 1,5-polyols via Krische's allylation (cf. main-text Figure 5a). Each step lists suggested conditions and provides hyperlinks to illustrative references (please note that Chematica and Allchemy are coded independently of one another and so illustrative literature links are generally not identical). As to the differences between computer-suggested and experimental conditions, in allylation step corresponding to panels (a-Chematica, d-Allchemy), we used the improved Krische's catalyst that we happened to have on the shelve - with $4-\mathrm{CN}-3-\mathrm{NO}_{2}-\mathrm{BzOH}$ instead of $3-\mathrm{NO}_{2}-\mathrm{BzOH}$ ligand proposed by Chematica. In the same spirit of shelve-availability, the hydrocyanation step (c-Chematica, f-Allchemy) was performed with simple $\mathrm{Zn}(\mathrm{CN})_{2}$ salt rather than proposed acetone cyanohydrin.

d) Reaction name: Krische allylation
Reaction conditions: [Ir]-catalyst, Cs2CO3, iPrOH, THF Solvent: THF
Alternative Solvent: t-Butyl ethyl ether
Literature reference: 10.1021/ja805722e and 10.1021/ja802001b
Conc
e) Reaction name: Williamson ether synthesis Reaction conditions: NaOH
Solvent: DCM or DMF or THF
Alternative Solvent: DMSO,t-Butyl ethyl ether Literature reference: 10.1021/jm9508245 and 10.1016/S0040-4039(00)92630-3

f) Reaction name: Brown hydroboration
Reaction conditions: $9-\mathrm{BBN}$ then $\mathrm{H} 2 \mathrm{O} 2, \mathrm{NaOH}$
Solvent: THF
Alternative Solvent: t-Butyl ethyl ether
Literature reference: 10.1007/s10600-019-02840-2 and 10.1016/j.bmcl.2003.10.038 and 10.1246/cl. 140800 and 10.1021/ja00222a028

g) Reaction name: Dess-Martin Oxidation
Reaction conditions: Dess-Martin periodinane
Solvent: DCM or THF
Alternative Solvent: t-Butyl ethyl ether
Literature reference: 10.1002/ejoc. 201601160 and 10.1055/s-2007-967942

Figure S56. Conditions for iterative sequences are sourced from individual reaction rules taught to the computer. This example shows screenshots from a-d, Chematica and e-g, Allchemy programs for individual steps of the iterative synthesis of 1,4 -polyols via Krische's allylation (Figure 5b). Each step lists suggested conditions and provides hyperlinks to illustrative references (please note that Chematica and Allchemy are coded independently of one another and so illustrative literature links are generally not identical). Regarding the differences between computer-suggested and experimental conditions, in the allylation step corresponding to panels (a-Chematica, d-Allchemy), we used the improved Krische's catalyst that we happened to have on the shelve - with $4-\mathrm{CN}-3-\mathrm{NO}_{2}-\mathrm{BzOH}$ instead of $3-\mathrm{NO}_{2}-\mathrm{BzOH}$ ligand proposed by Chematica.

Section S14. Pseudocode for the algorithm to identify iterative sequences.

```
function GENERALFiltering (seq)
```

\triangleright seq-considered reaction sequence
\triangleright returns False if basic conditions for considered reaction sequence are not satisfied

```
if seq.m
if seq.ms.isTrivial() then return False
                                    \triangleright ~ r e m o v e s ~ s u b s t r a t e s ~ l i k e ~ w a t e r ~ e t c .
    if commonAtoms(seq.m
    if commonAtoms(seq.m}\mp@subsup{m}{i}{},\mathrm{ seq.m}\mp@subsup{m}{s}{})=\emptyset\mathrm{ then return False
    return True
```

function GETFRAGMENTS (m)
\triangleright returns set of substructures (fragments) within radius $R=2$ for atoms of
molecule m
function FINDITERATIVES (seq)
$\triangleright s e q$ - considered reaction sequence, has the following fields:
$\triangleright s e q . r_{1}$ - reaction closer to target
\triangleright seq. r_{2} - reaction further from target
\triangleright seq. m_{t}, seq. m_{i}, seq. m_{s}, - target, intermediate, considered substrate
\triangleright seq. $m_{\text {inters }}$ - all intermediates (ie. intermediate and its 'siblings' from r_{1})
\triangleright seq. $m_{\text {subs }}$ - all substrates (ie. considered substrate and its 'siblings' from
r_{2})
if not generalFiltering(seq) then return False
$f r_{t} \leftarrow$ getFragments $\left(\right.$ seq. $\left.m_{t}\right)$
$\mathrm{fr}_{i} \leftarrow$ getFragments(seq. m_{i})
$\mathrm{fr}_{\text {subs }} \leftarrow$ getFragments(seq. $\left.m_{\text {subs }}\right)$
$F_{i} \leftarrow\left(f r_{i}-f r_{t}\right) \cap\left(f r_{i}-f r_{\text {subs }}\right)$
if $\left(F_{i}=\emptyset\right)$ then return False
$f r_{s} \leftarrow$ getFragments $\left(\right.$ seq. $\left.m_{s}\right)$
$F_{t s} \leftarrow\left(f r_{t}-f r_{i}\right) \cap\left(f r_{s}-f r_{i}\right)$
if findCoreLoop $\left(\right.$ seq, $\left.F_{t s}\right)$ then return True
if findABLoop(seq) then return True
return False

Figure S57: A general scheme of detecting iterative sequences (function findIteratives; lines 718). As input, the algorithm takes sequence seq of individual reaction steps (and/or sequences of steps, like FGI, see main text). Reactions entailing any incompatibilities - as determined
based on the list of groups incompatible with a given reaction rule - are excluded. In the 'general filtering' phase (generalFiltering; lines 1-5) the algorithm removes trivially useless pairs of reactions sequences such as simple loops (substrate $=$ target, e.g., reduction and then oxidation of the same group), or sequences in which target or substrate have no atoms common with the sequence's intermediates. In the 'structural fragment A regeneration filtering' phase (lines 9-13) the algorithm retains sequences if there exists any fragment (functional substructure within radius $\mathrm{R}=2$ of the molecule's atom; getFragments; line 6) present exclusively in the intermediate. Furthermore, iterative sequences are to be identified by the following two functions: findCoreLoop (cf. also Figure 53) and findABLoop; cf. also Figure S54).

```
function ACCEPTEDFTS \(\left(r_{1}, m_{t}, m_{\text {inters }}, F_{t s}\right)\)
\(\triangleright\) at least one member of \(F_{t s}\) has only one matching to target and overlaps
with core of \(r_{1}\) applied on \(m_{t}\) producing \(m_{\text {inters }}\)
        for \(f_{t s}\) in \(F_{t s}\) do
        if ( \(m_{t}\).countSubstructures \(\left(f_{t s}\right) \neq 1\) ) then continue
        if \(\left(m_{t}\right.\).substructure \(\left.\left(f_{t s}\right) \cap \operatorname{core}\left(r_{1}, m_{t}, m_{\text {inters }}\right) \neq \emptyset\right)\) ) then return
True
        return False
```

function $\operatorname{GEtSynthon}\left(r, m_{1}, m_{2}, m_{l s t}\right)$
\triangleright returns synthon of reaction r that, when applied to product m returning
substrates $m_{l s t}$, corresponds to substrate m_{2}
function GetSynthonForReactionCluster $\left(r_{1}, r, m_{1}, m_{2}, m_{l s t}\right)$
\triangleright returns synthon of reaction r_{1} analogous to $\operatorname{get} \operatorname{Synthon}\left(r, m_{1}, m_{2}, m_{l s t}\right)$
\triangleright assumption: r and r_{1} are from the same reaction cluster (have the same
name, number of products and number of synthons)

```
function CloseLoopCondition(seq)
\(\triangleright s e q\) - considered reaction sequence
\(\triangleright\) condition checking the possiblity of iterating more times with seq
    synt \(_{2} \leftarrow\) getSynthon \(\left(\right.\) seq. \(r_{2}\), seq. \(m_{i}\), seq. \(m_{s}\), seq. \(m_{\text {subs }}\) )
    if not seq. \(m_{t}\).hasSubstructure \(\left(\right.\) synt \(\left._{2}\right)\) then return False
    \(m_{f i} \leftarrow \operatorname{applyReaction}\left(\right.\) reverted \(\left(\right.\) seq. \(\left.r_{2}\right)\), seq. \(m_{t}\) ) \(\quad \triangleright\) generating forward
intermediate
    if \(m_{f i}\).atomCount ()\(\leq m_{i}\).atomCount () then return False
```



```
    synt \(_{1} \leftarrow\) getSynthonForReactionCluster \(\left(r\right.\), seq. \(\cdot r_{1}\), seq. \(m_{t}\), seq. \(m_{i}\), seq. \(\left.m_{\text {inters }}\right)\)
        if \(m_{f i}\).hasSubstructure \(\left(\right.\) synt \(\left._{1}\right)\) then return True
        return False
```

 function FINDCoreLoop \(\left(s e q, F_{t s}\right)\)
 \(\triangleright s e q\) - considered reaction sequence
 \(\triangleright F_{t s}\) - structural fragments present both in the target and the substrate,
 but is absent in the intermediate of considered sequence
 if not acceptedFts(seq. \(r_{1}\), seq. \(m_{t}\), seq. \(m_{\text {inters }}, F_{t s}\)) then return False
 if not closeLoopCondition(seq) then return False
 return True
 Figure S58: Pseudocode of CoreLoops (for example see main-text Figure 2a) identification (findCoreLoop; lines 17-20). The algorithm selects sequences of reactions having a substructure (structural motif) present both in the target and the substrate, but absent in the
intermediate. This structural motif overlaps with the "core" of reaction r_{1} ('structural fragment B regeneration'). More precisely, we define collection of substructures $F_{t s}=$ (frtarget $\left.f_{\text {intermediate }}\right) \cap\left(f_{r_{\text {substrate }}}-f r_{\text {intermediate }}\right)$ (cf. Figure $\mathbf{S 5 2}$ lines 9-10 and 14-15), and retain sequences in which at least one member of $F_{t s}$ has only one matching to target and overlaps with the r_{1} core (acceptedFts; lines 1-5). In addition, in order to assign a sequence of transformations to this category, the following close-the loop conditions have to be satisfied (closeLoopCondition; lines 8-16): target contains r_{2} core synthon, forward intermediate, i.e., product of r_{2} applied to the target in the forward direction ("reverted r_{2} ") contains core of the synthon from the r_{1} class (i.e., expert-coded reaction rule from the same chemical category having the same name, number of products and number of synthons as transformation r_{1}); forward intermediate must have more non-hydrogen atoms than intermediate to avoid, e.g., unproductive iterations (line 12).

1: function CountNonTrivial $\left(m_{l s t}\right)$
\triangleright counts members of $m_{l s t}$ without trivial molecules (eg. water, iodine monobromide, carbon dioxide)

```
function CROSSINCOMPATIBLE(seq)
\triangleright s e q ~ - ~ c o n s i d e r e d ~ r e a c t i o n ~ s e q u e n c e
    for g}\mathrm{ in seq.r.r.incompatibilities }\cup\mathrm{ seq.r.r.protections do
        if seq.m..hasSubstructure(g) then return True
        &substrate not compatible with seq.r
    for g}\mathrm{ in seq.r. .incompatibilities do
        if seq.m
                            \triangleright ~ t a r g e t ~ n o t ~ c o m p a t i b l e ~ w i t h ~ s e q . r _ { 1 }
```

 : function additionalChemicalFilter (seq)
 \(\triangleright s e q\) - considered reaction sequence
 \(\triangleright\) returns True for sequences with Grignard reagent as an intermediatea-
 mong intermediates, where a functional group incompatible with the syn-
 thesis of organomagnesium compounds was found among substrates (apart
 from cases, where this group overlapped with core of \(r_{2}\) creating considered
 Grignard reagent)
    ```
function FINDABLoop \((s e q)\)
\(\triangleright s e q\) - considered reaction sequence
    if count NonTrivial(seq. \(\left.m_{\text {inters }}\right)<2\) then
        if countNonTrivial(seq. \(\left.m_{\text {subs }}\right)<2\) then return False
    if hasProtection(seq. \(r_{1}\), seq. \(m_{t}\), seq. \(m_{\text {inters }}\) then return False
        \(\triangleright\) reactions with incompatibilities already removed while generating
    candidates for reaction sequences
    if crossIncompatible (seq) then return False
    if additionalChemicalFilter (seq) then return False
```

Figure S59: Pseudocode of ABLoops (for example see main-text Figure 2b) identification (findABLoop; lines 8-13). The algorithms filters out the following groups of sequences: (a) one-molecule sequences, i.e., only one non-trivial (countNonTrivial; line 1) synthon resulting from r_{1} and r_{2} (lines 9-10), (b) having protection on r_{1} (line 11; note sequences with incompatibilities at this step are removed earlier), (c) satisfying cross-incompatibility condition, i.e., target with incompatibility from r_{2}, or substrate with either protection or incompatibility from $\quad r_{1}$ (crossIncompatible; lines 2-6) (d) returning True when applying additionalChemicalFilter (line 7) .

Section S15. References

R1) I. S. Kim, M.-Y. Ngai, M. J. Krische, Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level using allyl acetate as an allyl metal surrogate. J. Am. Chem. Soc. 130, 6340-6341 (2008).

R2) D. Ghosh et al., Synthetically amenable amide derivatives of tosylated-amino acids as organocatalysts for enantioselective allylation of aldehydes: computational rationale for enantioselectivity. Org. Biomol. Chem. 11, 3451-3460 (2013).

R3) F. Hessler, A. Korotvička, D. Nečas, I. Valterová, M. Kotora, Syntheses of a Flobufen metabolite and Dapoxetine based on enantioselective allylation of aromatic aldehydes. Eur. J. Org. Chem. 2014, 2543-2548 (2014).
R4) J. Cossy, C. Willis, V. Bellosta, S. BouzBouz, Enantioselective allyltitanations and metathesis reactions. Application to the synthesis of piperidine alkaloids (+)-Sedamine and (-)Prosophylline. J. Org. Chem. 67, 1982-1992 (2002).

R5) G. Wang, X. Xie, W. Xu, Y. Liu, Nickel-catalyzed highly regioselective hydrocyanation of alkenes with $\mathrm{Zn}(\mathrm{CN})_{2}$. Org. Chem. Front. 6, 2037-2042 (2019).

R6) T. R. Hoye, C. S. Jeffrey, F. Shao, Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc. 2, 2451-2458 (2007).

R7) G. Zhong, Tandem aminoxylation-allylation reactions: a rapid, asymmetric conversion of aldehydes to mono-substituted 1,2-diols. Chem. Commun. 606-607 (2004).

R8) M. Simek, K. Bartova, R. Pohl, I. Cisarova, U. Jahn, Tandem anionic oxy-Cope rearrangement/oxygenation reactions as a versatile method for approaching diverse scaffolds. Angew. Chem. Int. Ed. 59, 6160-6165 (2020).
R9) A. G. M. Barrett, W. W. Doubleday, K. Kasdorf, G. J. Tustin, Stereochemical elucidation of the pentacyclopropane antifungal agent FR-900848. J. Org. Chem. 61, 3280-3288 (1996).

R10) Huang, H. et al. Design, synthesis, and biological evaluation of novel nonsteroidal farnesoid X receptor (FXR) antagonists: Molecular basis of FXR antagonism. ChemMedChem 10, 1184-1199 (2015).

R11) Schöllkopf, U. \& Schröder, R. 2-Unsubstituted oxazoles from α-metalated isocyanides and acylating Agents. Angew. Chem. Int. Ed. 10, 333-333 (1971).

R12) J.K. Augustine, V. Vairaperumal, S. Narasimhan, P. Alagarsamy \& A. Radhakrishnan, Propylphosphonic anhydride (T3P®): an efficient reagent for the one-pot synthesis of 1,2,4oxadiazoles, 1,3,4-oxadiazoles, and 1,3,4-thiadiazoles. Tetrahedron 65, 9989-9996 (2009).

R13) Khan, A. T. et al. Synthesis of tetra-substituted pyrroles, a potential phosphodiesterase 4B inhibitor, through nickel(II) chloride hexahydrate catalyzed one-pot four-component reaction. Tetrahedron Lett. 53, 4145-4150 (2012).

R14) Laha, J. K., Tummalapalli, K. S. S. \& Gupta, A. Palladium-catalyzed domino double $N-$ arylations (inter- and intramolecular) of 1,2-diamino(hetero)arenes with o, o^{\prime}-dihalo(hetero)arenes for the synthesis of phenazines and pyridoquinoxalines. European J. Org. Chem. 2013, 8330-8335 (2013).

R15) Kemme, S. T., Šmejkal, T. \& Breit, B. Combined Transition-Metal- and Organocatalysis:
An Atom Economic C3 Homologation of Alkenes to Carbonyl and Carboxylic Compounds. Chem. - A Eur. J. 16, 3423-3433 (2010).

R16) Ren, W. et al. An Effective Pd-Catalyzed Regioselective Hydroformylation of Olefins with Formic Acid. J. Am. Chem. Soc. 138, 14864-14867 (2016).

[^0]: Conditions: i. THF ii. LiAlH_{4} iii. $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$ iv. Mg, THF

[^1]:

