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Abstract: We reported a new method dealing with the synthesis of novel pharmacologically relevant
α-aminophosphonate derivatives via a lipase-catalyzed Kabachnik−Fields reaction with yields of up
to 93%. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and
sustainability. The developed protocol is applicable to a range of H-phosphites and organic amines,
providing a wide substrate scope. A new class of α-aminophosphonate analogues possessing P-chiral
centers was also synthesized. The synthesized compounds were characterized on the basis of their
antimicrobial activities against E. coli. The impact of the various alkoxy groups on antimicrobial
activity was demonstrated. The crucial role of the substituents, located at the aromatic rings in the
phenylethyloxy and benzyloxy groups, on the inhibitory action against selected pathogenic E. coli
strains was revealed. The observed results are especially important because of increasing resistance
of bacteria to various drugs and antibiotics.

Keywords: α-aminophosphonates; Kabachnik−Fields reaction; antimicrobial activity

1. Introduction

α-Aminophosphonates appear to be a very important class of organic compounds
because of their potential biological activities [1–4]. The distinctive character of bioactive
organophosphorus compounds has established their wide applicability in agricultural
and medicinal chemistry [5–12]. α-Aminophosphonates (Figure 1) play a crucial role
as a platform to design new drugs [13–20]. Among other advantages, there are several
reports regarding their antimicrobial activity; alafosfalin, for example, a simple dialkyl
α-aminophosphonate, exhibits activity against pathogenic E. coli, S. aureus, Bacillus, and
K. pneumonia strains (Figure 1) [21–30]. However, the application of alafosfalin in medicine
is limited due to its instability. It is shown that the correct design of the alkoxyl groups in
the H-phosphite used for these compounds may significantly increase their antimicrobial
properties (Figure 1) [1–3,31–36].
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Figure 1. Biologically active antimicrobial α-aminophosphonate derivatives. 

The aim of the work is to develop a metal-free protocol for the preparation of 
α-aminophosphonate derivatives with P-chiral centers on bacterial strains K12 and 
R2−R4. 

2. Materials and Methods 
2.1. Microorganisms and Media 

All microorganisms and media were accurately described in detail in the previous 
work [37–74] and analyzed by a Tukey test. 

2.2. General Methods of Synthesis α-Aminophosphonate Derivatives 
All the chemicals were described in detail in the previous work [74]. All specific 

strains, such as Pseudomonas cepacia (PcL) and wheat germ, were provided by Sig-
ma-Aldrich (Merck). The bovine acetone powder was prepared in our laboratory ac-
cording to the literature procedure [38]. Symmetrical and unsymmetrical H-phosphites 
were obtained via alcoholysis of the dimethyl phosphite with the appropriate alcohol 
according to the literature procedure [40–46] (see Supplementary Materials). 

3. Results 
3.1. Chemistry 

Organophosphorus compounds show a variety of relevant biological activities 
[47–49]. The Kabachnik–Fields reaction is the most efficient method for the formation of 
carbon−phosphorus bonds using an aldehyde, amine, and H-phosphite. A number of 
other synthetic approaches have also been reported for the preparation of 
α-aminophosphonates [7,50–95]. These methods are generally conducted in the presence 
of various organic and inorganic bases [56–58] as well as Lewis and Bronsted acids, such 
as zirconium tetrachloride (ZrCl4), aluminum chloride (AlCl3), tantalum pentachloride 
(TaCl5), or lanthanide triflates [59–63]. Therefore, it is necessary to further develop an ef-
ficient one-pot, multicomponent synthesis of α-aminophosphonates that is devoid of 
these problems and fulfils requirements of the pharmaceutical industry. Enzymes, which 
are natural catalysts with high catalytic activity, seem to be the best alternative leading to 
the development of new synthesis methods that meet the requirements related to safety 
and environmental protection. In addition, enzymes enable the synthesis of compounds 
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The aim of the work is to develop a metal-free protocol for the preparation of α-
aminophosphonate derivatives with P-chiral centers on bacterial strains K12 and R2−R4.

2. Materials and Methods
2.1. Microorganisms and Media

All microorganisms and media were accurately described in detail in the previous
work [37–74] and analyzed by a Tukey test.

2.2. General Methods of Synthesis α-Aminophosphonate Derivatives

All the chemicals were described in detail in the previous work [74]. All specific strains,
such as Pseudomonas cepacia (PcL) and wheat germ, were provided by Sigma-Aldrich
(Merck). The bovine acetone powder was prepared in our laboratory according to the
literature procedure [38]. Symmetrical and unsymmetrical H-phosphites were obtained
via alcoholysis of the dimethyl phosphite with the appropriate alcohol according to the
literature procedure [40–46] (see Supplementary Materials).

3. Results
3.1. Chemistry

Organophosphorus compounds show a variety of relevant biological activities [47–49].
The Kabachnik–Fields reaction is the most efficient method for the formation of
carbon−phosphorus bonds using an aldehyde, amine, and H-phosphite. A number of
other synthetic approaches have also been reported for the preparation of α-aminophos
phonates [7,50–95]. These methods are generally conducted in the presence of various
organic and inorganic bases [56–58] as well as Lewis and Bronsted acids, such as zirco-
nium tetrachloride (ZrCl4), aluminum chloride (AlCl3), tantalum pentachloride (TaCl5),
or lanthanide triflates [59–63]. Therefore, it is necessary to further develop an efficient
one-pot, multicomponent synthesis of α-aminophosphonates that is devoid of these prob-
lems and fulfils requirements of the pharmaceutical industry. Enzymes, which are natural
catalysts with high catalytic activity, seem to be the best alternative leading to the de-
velopment of new synthesis methods that meet the requirements related to safety and
environmental protection. In addition, enzymes enable the synthesis of compounds with-
out metal contamination, which is especially appreciated by the pharmaceutical industries.
Among other uses, hydrolases are most often used as biocatalysts in organic synthesis.
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Our work is more focused on discovering new unnatural catalytic activities of hydrolases.
This phenomenon was defined as enzymatic promiscuity. Recently, a number of unnatural
reactions catalyzed by hydrolases have been reported, such as the aza-Henry reaction [64],
Michael additions [65,66], 1,2-addition of thiols to imines [67], and Morita–Baylis–Hillman
reaction [68–70]. Although some chemical strategies work towards the synthesis of α-
aminophosphonates, the biocatalytic preparation of target α-aminophosphonates remains
unexploited. It was shown that some selected α-aminophosphonates could be obtained
from aniline derivatives by the Kabachnik–Fields reaction using Candida antarctica lipase B
(CAL-B) as a catalyst [71–73].

As a continuation of our research on seeking new catalytic activities of
hydrolases [74–80,94,95], we focused our efforts on elaborating a sustainable metal-free
method towards desired α-aminophosphonates 1–16 (Figure 2).
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Figure 2. α-Aminophosphonates 1–16 obtained via an enzyme-catalyzed Kabachnik–Fields reac-
tion. Yields in brackets provided for isolated products 1–16. 

Regarding the promiscuous activity of lipases, [71] the model Kabachnik–Fields re-
action of benzyl amine (1 mmol), benzaldehyde (1 mmol), and dimethyl phosphite (1 
mmol) was conducted in neat at 25 °C (Scheme 1 and Table 1, entry 1). 
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Scheme 1. Enzyme-catalyzed synthesis of α-aminophosphonates 1–16. 

Table 1. Model Kabachnik–Fields reaction catalyzed by enzymes. [a] Optimization studies. 

Figure 2. α-Aminophosphonates 1–16 obtained via an enzyme-catalyzed Kabachnik–Fields reaction.
Yields in brackets provided for isolated products 1–16.

Regarding the promiscuous activity of lipases, [71] the model Kabachnik–Fields reac-
tion of benzyl amine (1 mmol), benzaldehyde (1 mmol), and dimethyl phosphite (1 mmol)
was conducted in neat at 25 ◦C (Scheme 1 and Table 1, entry 1).
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Table 1. Model Kabachnik–Fields reaction catalyzed by enzymes. [a] Optimization studies.

Entry Catalyst T (◦C) Solvent Yield [%] f

1 None 25 neat <5
2 Porcine pancreas lipase (PpL) 25 neat 73
3 Porcine pancreas lipase (PpL) 25 Toluene 64
4 Porcine pancreas lipase (PpL) 25 EtOAc 18
5 Porcine pancreas lipase (PpL) 25 THF 52
6 Porcine pancreas lipase (PpL) 25 2-Me THF 55
7 Porcine pancreas lipase (PpL) 25 TBME 88
8 Porcine pancreas lipase (PpL) 30 TBME 91
9 Porcine pancreas lipase (PpL) 40 TBME 87
10 Porcine pancreas lipase (PpL) b 30 TBME 93
11 Wheat germ lipase 20 neat 29
12 Pseudomonas cepacia lipase (PfL) 20 neat 44
13 Candida cylindracea lipase (CcL) 20 neat 57
14 Candida rugosa lipase (CrL) 20 neat 35
15 Novozym 435 20 neat 67
16 Bovine serum albumin (BSA) 30 TBME 9
17 Bovine liver acetone powder (BLAP) c 20 neat 43
18 Denatured PpL d 30 TBME <1
19 CuI e 25 neat 39
20 Cu2O e 25 neat 24
21 Cu(OAc)2

e 25 neat 33
22 PhB(OH)2

e 25 neat 14
a Reaction conditions: benzaldehyde (1 mmol), benzylamine (1 mmol), dimethyl phosphite (1 mmol), and enzyme
(50 mg) in a solvent (2 mL) for 24 h, 200 rpm; b PpL (80 mg); c domestically prepared; d thermally deactivated at
100 ◦C for 24 h; e 10 mol%; f yield of the isolated product 1 after chromatography on silica gel.

As shown in Table 1, lipase from a porcine pancreas (PpL) was found as the best catalyst
among the tested lipases for this addition reaction (Table 1, entry 2). The α-aminophosphonate
1 obtained agood yield (73%) after 24 h in neat at 25 ◦C. The yield did not increase sub-
stantially after 24 h. In the absence of enzyme only traces of the target product 1 was
formed (Table 1, entry 1). In addition, four different nonenzymatic catalysts were reported
in the literature as sustainable promoters of the Kabachnik–Fields reaction [81–83,94,95];
copper(I) iodide, copper(I) oxide, copper(II) acetate, and phenylboronic acid were tested
under similar reaction conditions, leading to the target product 1 with up to a 39% yield
(Table 1, entries 19–22). It is well recognized that the type of solvent used has a great impact
on enzyme stability and activity [84]. Product 1 was provided with the highest yield of 88%
in TBME (Table 1, entry 7); therefore, this solvent was applied in the following optimization.
Furthermore, the model reaction was carried out at elevated temperatures; however, the
yield of product 1 was reduced at temperatures above 30 ◦C (Table 1, entries 8 and 9). Next,
we studied if the amount of enzyme used had any impact on the reaction yield, and we
found out that the yield of target compound 1 increased slightly by raising the amount of
PpL from 50 mg to 80 mg. Thus, the 80 mg of PpL was the optimal amount for the further
investigations [71,94,95].

Finally, we used the elaborated enzymatic protocol with various aromatic and aliphatic
amines, aldehydes, and symmetrical as well as unsymmetrical H-phosphites [41] (Figure 2).
The enzymatic Kabachnik–Fields reaction with aliphatic aldehydes and amines as well as
2-phenylethylamine provided products 4, 5, and 9–11 with lower yield ranges from 51%
to 71% (Figure 2). A similar reduction in the reaction yield was observed for sterically
bulky electron-rich aldehyde and amine with methoxy groups located at the phenyl ring,
which resulted in product 8 with a 69% yield. Finally, the application of unsymmetrical
H-phosphonates provided P-chiral products 14–16 as a mixture of diasteroisomers (1:1)
with yields up to 76%. The structures of all obtained compounds 1–16 are presented in the
experimental section (Supplementary Materials Figures S4–S65).
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Additional experiments were performed to gather insights on the reaction pathway.
Under developed conditions, N-(4-methoxylbenzylidene)benzylamine was used together
with dimethyl H-phosphite in the presence of PpL as a catalyst, which resulted in an
excellent yield of 95% of the target α-aminophosphonate 1. This observation constitutes
the initial formation of an imine in the presence of lipase (Scheme 2).
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3.2. Cytotoxic Studies of the Library of α-Hydroxy Phosphonate Derivatives

It is worth noting that the introduction of a fluorine atom into the structure of all
16 tested compounds did not have a significant effect on the activity of 2 and 12, which
is often observed for various types of compounds exhibiting antibacterial activity [12]
(Figures 3–6 and 8).
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Figure 3. Minimum inhibitory concentration (MIC) of the phosphonate derivatives in model bacterial
strains. The x-axis features compounds 1–16 used sequentially. The y-axis shows the MIC value in
µg/mL−1. Investigated strains of E. coli K12 as the control (blue), R2 strains (orange), R3 strains
(grey), and R4 strains (yellow). The order in which the compounds were applied to the plate is shown
in Supplementary Materials Figure S1.
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Figure 4. Minimum bactericidal concentration (MBC) of the phosphonate derivatives. The x-axis fea-
tures compounds 1–16 used sequentially. The y-axis shows the MIC value in µg/mL−1. Investigated
strains of E. coli K12 as control (blue), R2 strains (orange), R3 strains (grey), and R4 strains (yellow).
The order in which the compounds were applied to the plate is shown in Supplementary Materials
Figure S1.
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Figure 5. The ratio of MBC/MIC of the phosphonate derivatives. The x-axis features compounds
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The analyzed bacterial strains used in the experiments were used in 48-well plates.
(Figures 3–5 and Table 2).

Table 2. Statistical analysis of all analyzed compounds by MIC, MBC, and MBC/MIC; <0.05 *,
<0.01 **, <0.001 ***.

No. of Samples 13 15 16 Type of Test

K12 *** *** *** MIC

R2 *** *** *** MIC

R3 *** *** *** MIC

R4 *** *** *** MIC

K12 ** * ** MBC

R2 ** * ** MBC

R3 ** * ** MBC

R4 ** * ** MBC

K12 *** ** ** MBC/MIC

R2 *** ** ** MBC/MIC

R3 *** ** ** MBC/MIC

R4 *** ** ** MBC/MIC

3.3. Analysis of R2–R4 E. coli Strains Modified with α-Aminophosphonate Derivatives

The obtained MIC values as well as our previous studies with various types of the
analyzed compounds [85–95] indicate that α-aminophosphonate derivatives also show a
strong toxic effect on the analyzed bacterial model strains. The three analyzed compounds
were selected for further analysis by modifying their DNA. Modified bacterial DNA was
digested with Fpg as described earlier [85–93]. All selected analyzed α-aminophosphonate
derivatives (Figure 6), including different types of alkoxy groups, substituents located at
the phenyl ring, and the length of the alkyl chain, can strongly change the topology of
bacterial DNA. After digestion with Fpg, approximately 3.5% of oxidative damage was
identified, which very strongly indicates oxidative damage in bacterial DNA, similar to the
previous observations [85–93]. The different types of alkoxy groups, substituents located at
the phenyl ring, and the length of the alkyl affected this outcome (Figure 6).
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3.4. R2-R4 E. coli Strains with Tested α-Aminophosphonate Derivatives

The performed studies prove that the analyzed and newly synthesized compounds
can potentially be used as “substitutes” for the currently used antibiotics in hospital and
clinical infections, (Figures 7 and 8 and Supplementary Materials Figure S3).
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< 0.05.
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Large modifications of plasmid DNA were observed for the three analyzed compounds
numbered 13, 15, and 16, showing high superselectivity.

4. Conclusions

Our developed protocol provides an efficient mild and metal-free synthesis of the
target products with a high yield (51–93%). Among the studied derivatives, the compounds
possessing alkoxy groups with halogen atoms or nitro groups in phosphate moieties 13,
15, and 16 turned out to be the most active compared to derivatives with the dimethyl
groups (Figure 2). Finally, the reported α-aminophosphonate derivatives are more cytotoxic
in the model bacterial cells than the following commonly used antibiotics: ciprofloxacin,
bleomycin, and cloxacillin.

Supplementary Materials: The supporting information can be downloaded at the following: https:
//www.mdpi.com/article/10.3390/ma15113846/s1. Figure S1: examples of MIC and MBC on mi-
croplates with different concentrations of studied compounds (mg L−1). Figure S2: an example of
an agarose gel electrophoresis separation of isolated plasmids DNA from R4 strains modified with
selected compounds. Figure S3: an example of an agarose gel electrophoresis separation of isolated
plasmids DNA from R4 strains modified with the following antibiotics: cloxacilline, ciprofloxaclinie,
and bleomycine digested (or not) with repair Fpg enzymes. NMR spectra of α-aminophosphonate
derivatives 1–16. Figure S4: 1HNMR (400 MHz, CDCl3) spectra of compound 1. Figure S5: 13CNMR
(100 MHz, CDCl3) spectra of compound 1. Figure S6: 31PNMR (162 MHz, CDCl3) spectra of com-
pound 1. Figure S7: 1HNMR (400 MHz, CDCl3) spectra of compound 2. Figure S8: 13CNMR (100 MHz,
CDCl3) spectra of compound 2. Figure S9: 31PNMR (162 MHz, CDCl3) spectra of compound 2. Figure
S10: 1HNMR (400 MHz, CDCl3) spectra of compound 3. Figure S11: 13CNMR (100 MHz, CDCl3)
spectra of compound 3. Figure S12: 31PNMR (162 MHz, CDCl3) spectra of compound 3. Figure
S13: 1HNMR (400 MHz, CDCl3) spectra of compound 4. Figure S14: 13CNMR (100 MHz, CDCl3)
spectra of compound 4. Figure S15: 31PNMR (162 MHz, CDCl3) spectra of compound 4. Figure
S16: 1HNMR (400 MHz, CDCl3) spectra of compound 5. Figure S17: 13CNMR (100 MHz, CDCl3)
spectra of compound 5. Figure S18: 31PNMR (162 MHz, CDCl3) spectra of compound 5. Figure
S19: 1HNMR (400 MHz, CDCl3) spectra of compound 6. Figure S20: 13CNMR (100 MHz, CDCl3)
spectra of compound 6. Figure S21: 31PNMR (162 MHz, CDCl3) spectra of compound 6. Figure
S22: 1HNMR (400 MHz, CDCl3) spectra of compound 7. Figure S23: 13CNMR (100 MHz, CDCl3)
spectra of compound 7. Figure S24: 31PNMR (162 MHz, CDCl3) spectra of compound 7. Figure
S25: 1HNMR (400 MHz, CDCl3) spectra of compound 8. Figure S26: 13CNMR (100 MHz, CDCl3)
spectra of compound 8. Figure S27: 31PNMR (162 MHz, CDCl3) spectra of compound 8. Figure
S28: 1HNMR (400 MHz, CDCl3) spectra of compound 9. Figure S29: 13CNMR (100 MHz, CDCl3)
spectra of compound 9. Figure S30: 31PNMR (162 MHz, CDCl3) spectra of compound 9. Figure
S31: 1HNMR (400 MHz, CDCl3) spectra of compound 10. Figure S32: 13CNMR (100 MHz, CDCl3)
spectra of compound 10. Figure S33: 31PNMR (162 MHz, CDCl3) spectra of compound 10. Figure
S34: 1HNMR (400 MHz, CDCl3) spectra of compound 11. Figure S35: 13CNMR (100 MHz, CDCl3)
spectra of compound 11. Figure S36: 31PNMR (162 MHz, CDCl3) spectra of compound 11. Figure
S37: 1HNMR (400 MHz, CDCl3) spectra of compound 12. Figure S38: 13CNMR (100 MHz, CDCl3)
spectra of compound 12. Figure S39: 31PNMR (162 MHz, CDCl3) spectra of compound 12. Figure
S40: 1HNMR (400 MHz, CDCl3) spectra of compound 13. Figure S41: 13CNMR (100 MHz, CDCl3)
spectra of compound 13. Figure S42: 31PNMR (162 MHz, CDCl3) spectra of compound 13. Figure
S43: 1HNMR (400 MHz, CDCl3) spectra of compound 14. Figure S44: 13CNMR (100 MHz, CDCl3)
spectra of compound 14. Figure S45: 31PNMR (162 MHz, CDCl3) spectra of compound 14. Figure
S46: 1HNMR (400 MHz, CDCl3) spectra of compound 15. Figure S47: 13CNMR (100 MHz, CDCl3)
spectra of compound 15. Figure S48: 31PNMR (162 MHz, CDCl3) spectra of compound 15. Figure
S49: 1HNMR (400 MHz, CDCl3) spectra of compound 16. Figure S50: 13CNMR (100 MHz, CDCl3)
spectra of compound 16. Figure S51: 31PNMR (162 MHz, CDCl3) spectra of compound 16. Figure
S52: 1HNMR (400 MHz, CDCl3) spectra of bis(4-fluorophenylethyl)phosphite. Figure S53: 13CNMR
(100 MHz, CDCl3) spectra of bis(4-fluorophenylethyl)phosphite. Figure S54: 31PNMR (162 MHz,
CDCl3) spectra of bis(4-fluorophenylethyl)phosphite. Figure S55: 1HNMR (400 MHz, CDCl3) spec-
tra of methyl (phenylethyl) phosphite. Figure S56: 13CNMR (100 MHz, CDCl3) spectra of methyl
(phenylethyl) phosphite. Figure S57: 31PNMR (162 MHz, CDCl3) spectra of methyl (phenylethyl)
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phosphite. Figure S58: 1HNMR (400 MHz, CDCl3) spectra of methyl (4-chlorophenylethyl) phos-
phite. Figure S59: 13CNMR (100 MHz, CDCl3) spectra of methyl (4-chlorophenylethyl) phosphite.
Figure S60: 31PNMR (162 MHz, CDCl3) spectra of methyl (4-chlorophenylethyl) phosphite. Figure
S61: 1HNMR (400 MHz, CDCl3) spectra of methyl (4-nitrobenzyl) phosphite. Figure S62: 13CNMR
(100 MHz, CDCl3) spectra of methyl (4-nitrobenzyl) phosphite. Figure S63: 31PNMR (162 MHz,
CDCl3) spectra of methyl (4-nitrobenzyl) phosphite. Figure S64: 1HNMR (400 MHz, CDCl3) spectra
of N-(4-methoxylbenzylidene)benzylamine. Figure S65: 13CNMR (100 MHz, CDCl3) spectra of
N-(4-methoxylbenzylidene)benzylamine.
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