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Abstract

In 2020, a “hybrid” expert-AI computer program called Chematica (a.k.a. Synthia)

was shown to autonomously plan multistep syntheses of complex natural prod-

ucts, which remain outside the reach of purely data-driven AI programs. The

ability to plan at this level of chemical sophistication has been attributed mainly

to the superior quality of Chematica's reactions rules. However, rules alone are

not sufficient for advanced synthetic planning which also requires appropriately

crafted algorithms with which to intelligently navigate the enormous networks

of synthetic possibilities, score the synthetic positions encountered, and rank

the pathways identified. Chematica's algorithms are distinct from prêt-à-porter

algorithmic solutions and are product of multiple rounds of improvements,

against target structures of increasing complexity. Since descriptions of these

improvements have been scattered among several of our prior publications, the

aim of the current Review is to narrate the development process in a more

comprehensive manner.
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1 | INTRODUCTION

The first attempts to use computers to design multistep syntheses1–7 date back to the 1960's and have, back then, met
with considerable interest and anticipation that the challenge of computerized retrosynthesis would be addressed in
short order. Unfortunately, time passed yet the vision of computers providing complete and chemically sound retro-
synthetic plans remained unrealized8—in fact, the experimental validations of machine's suggestions for the synthesis
of more complex targets failed9,10 whereas those for simpler targets gave disappointing yields,11 worse than those in the
human-designed syntheses. In addition, the early programs were not really fully automated and, as in the pioneering
LHASA, provided only lists of one-step suggestions, from which the human operator had to construct complete path-
ways. Given that the numbers of reactions potentially applicable at each step are in tens to hundreds, such manual nav-
igation rapidly explodes the number of possibilities and the term “combinatorial explosion” has been coined12 to, pretty
much, deem the problem intractable, especially for the syntheses of complex targets requiring tens of steps.
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Notwithstanding, starting in the early 2000's, we revisited the problem from a perspective of large-scale networks13–15

akin to those underlying chess-playing programs such as the then-popular DeepBlue. Namely, we envisioned the pro-
cess of retrosynthetic design as a combination of (1) The “moves” defined by the reaction rules; (2) The large-scale net-
works, defined by the retron-to-synthon expansions according to these rules; and (3) The scoring functions that would
guide the navigation over such networks to find reaction pathways starting from readily available and structurally sim-
ple materials. In the initial series of papers,13–18 between 2005 and 2012, we described how large reaction datasets can
be translated into the bi-partite network representation and how they can be navigated to trace and score reaction
routes. These early attempts were based on “static” networks of the already published reactions but by ca. 2015, we
have augmented them with large-enough set of reaction rules that allowed de novo synthesis planning for arbitrary
and/or previously unknown targets (yielding, of course, syntheses not reported in the literature). These key elements
were combined in our Chematica platform and were formalized in the 2016 publication19 which, in many ways, revived
broader interest in computational synthesis. In that article, we presented first completely autonomously
designed and unprecedented routes to already nontrivial—though not yet complex—targets such as goniothalesdiol
A or (+)-Cryptocarya diol.

From this point onward, two major lines of thinking have emerged. We continued to develop Chematica with the
main focus on expert-coded reaction rules20 and dual (“chemicals” and “reactions”) scoring functions based on chemi-
cally interpretable variables21,22 (numbers of rings or stereocenters, penalties for group incompatibilities, etc.). In paral-
lel, we augmented these key components with various theoretical methods ranging from molecular mechanics, MM, to
quantum mechanics, QM,21 to Machine Learning, ML.23,24 By contrast, virtually all other teams pursued purely data-
driven AI strategy,25–32 largely motivated by the assumption that only automated extraction of rules can keep the pace
of the “exponentially expanding” body of chemical knowledge (although, as recently shown, the growth is not nearly as
rapid, and only a very small fraction of reaction classes have enough literature examples to allow for meaningful
machine learning).33 These efforts have been based either on (i) automatic extraction of rules from large reaction data-
bases and then scoring the reaction “moves” by various types of neural networks, NNs, trained on these databases; or
(ii) template-free methods using the so-called transformer NNs trained on large reaction repositories.29,31

Given the recent feats of AI approaches in many other areas, the outcome of the “retrosynthesis rivalry” has been
somewhat curious and not in AI's favor. On one hand, the success of our “hybrid” expert-MM-QM-ML approach has
been documented by multiple experimental validations—by us21,22,34 and others35—of complete, Chematica-designed
reaction routes leading not only to medicinally relevant targets21,35 (Figure 1a) but also complex natural products,22,34

at the forefront of modern organic synthesis (Figure 1b). Moreover, in,22 we showed that world's leading experts were
no longer able to distinguish the machine-planned syntheses of very complex targets from those designed by humans.
The program, rebranded as Synthia, is now commercialized and deployed by Merck KGaA in industry and acade-
mia35,36 worldwide. On the other hand, the AI-based efforts have been very prolific in proposing various NN architec-
tures but the synthetic routes they produce continue to be limited to simple targets for which, one could argue, a
competent chemist would not really need any computational support. In particular, even when trained on reaction col-
lections as vast as Reaxys or SciFinder, such programs fail to plan routes to targets incorporating demanding stereo-
chemical or skeletal motifs (as, indeed, we verified in22 for the natural products Chematica tackled). We are also
unaware of any experimental validations of nontrivial syntheses suggested by these platforms.

While this dichotomy in performance is now becoming recognized,36–39 the source of Chematica's successful syn-
thetic planning has most often been attributed to its superior knowledge base of reaction rules which—based on the
underlying reaction mechanism—are coded to delineate a broad spectrum of functional groups and structural frag-
ments incompatible with a given reaction.20 Indeed, in this way, the rules can indirectly map the space of “impossible”
reactions to which literature-based AI methods have really no access (other than stipulating that putative reactions not
reported in the literature are impossible, which is a dangerous oversimplification; see footnote #9 in [40]).

The quality of its chemical knowledge base is certainly important (and have been reviewed as such in [19,20,41]), but
this is not the sole significant difference between Chematica and its AI contenders. The other key component are the
algorithms with which these programs navigate the expanding networks of synthetic possibilities to find and then rank
complete synthetic pathways. In the AI approaches, the key development—since then used in most other works on the
topic—was the 2018 paper by Segler et al.32 in which they adapted the so-called Monte Carlo Tree Search, MCTS, to
expand the retrosynthetic tree by random sampling of the search space using rollouts starting from the tree's nodes.
The origins of MCTS can be traced to the 2006 paper,42 where the method (then, under a the name of “bandit-based
Monte-Carlo”) outperformed some alternatives, like asynchronous dynamic programming.43 By contrast, Chematica
has consistently used its own set of network-search algorithms with which it scores “synthetic positions” defined in
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FIGURE 1 Examples of syntheses designed autonomously by Chematica and later validated in the laboratory. (a) In 2018, using its

basic search algorithm and scoring functions, Chematica was able to design efficient routes to medicinally important drug molecules21—like

the BRD 7/9 inhibitor shown here. In doing so, it was already showing some creativity: here, it skillfully applied the three-component aza-

Henry reaction to design a concise and much higher yielding route than the previously published eight-step synthesis of the same target.

(b) By 2020, with improved knowledge base and algorithms, the program was able to plan total syntheses of complex natural products.

Shown here is the synthesis of (R,R,S)-tacamonidine. This target was chosen because it had not been synthesized before and because the

multiple syntheses of its close analogue, tacamonine, are not amenable to the construction of the quaternary hydroxylated stereocentre

present in tacamonidine. For even more complex targets and routes, see Reference 22 and its extended figures and supplementary

information. Here, miniatures of Chematica's bi-partite graphs are shown above corresponding synthetic panels. In these graphs, orange circular

node = target; violet nodes = unknown substances; green nodes = known substances (with numerals denoting synthetic popularity, i.e., the

number of literature-reported syntheses in which a particular molecule was used as a substrate; red nodes = terminal, commercially available

chemicals (with prices in $/g); blue halo = protection needed. In the synthesis panels, substrates drawn/listed in red and green correspond to the

red and green nodes in Chematica's scheme. Experimental yields are given in blue font below reaction arrows. In panel (b), yellow star denotes

intermediate 4 that is already known and whose synthesis could be found from Chematica's literature-based Network of Organic Chemistry

module13–19—however, upon reaching this starting material, the algorithm was allowed to continue the de novo search and navigate the synthesis

all the way to very simple, commercially available building blocks (terminal red nodes). Figure and parts of the caption reproduced with

permission (a) from Reference 21 (Copyright 2018 Elsevier) and (b) from Reference 22 (Copyright 2020 Springer Nature)
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terms of both the molecules it creates and reaction operations it performs. In doing so, the program pursues multiple
search strategies supported by beam-search-inspired44 priority queues as well as multistep strategizing routines22,33 to
seek more far-sighted synthetic plans. Importantly, when MCTS and our algorithms were compared and used in con-
junction with Chematica's other components, both algorithms performed well for simple targets (which is in line with a
recent analysis of MCTS vs. an algorithm similar to Chematica's early versions [45]) but it was only the latter that was
able to navigate routes to complex natural products—as opposed to MCTS which typically found no pathways22 (likely
because difficult syntheses cannot be finished by MCTS's rollouts).

The focus of the present Review, however, is neither to delve into such comparisons nor to exclude the possibility
that in the future, the MCTS or other types of algorithms can be improved and adapted to advanced-level synthesis
planning. Instead, our objective here is to summarize the principles on which Chematica's current and successful
synthesis-planning search routines are based. This information has so far been scattered among several of our publica-
tions19,21,22,34,41,46–48 and likely described in insufficient detail. In this light, we think it is timely and important to pro-
vide a more thorough and unifying description of our algorithms and scoring functions. In doing so, our hope is that
they can be adapted to other synthesis-planning programs to enable synthetic designs more advanced than in the cur-
rent AI-based methods, and that they can also foster development of even more efficient network-search and scoring
routines.

2 | GENERAL CONSIDERATIONS FOR COMPUTERIZED
RETROSYNTHESIS

The process of retrosynthesis aims to design at least one viable synthetic route to some target molecule of interest by
iterative application of reaction rules encoding commonly accepted reaction types (say, SN2, Diel-Alder, Michael addi-
tion, Pd-catalyzed couplings, and many more). The reaction-core atoms, scope of admissible substituents in the core's
neighborhood, and also lists of incompatible groups can generally be expert-coded quite flexibly in the SMARTS nota-
tion, as described in detail in.20 However, it is worth re-emphasizing that in many cases, such SMARTS-encoded rules
need to be fine-tuned by more advanced models. For instance, for aromatic substitutions, SMARTS notation is ill-suited
to encode all possible ring types and substitution patterns. Instead, the positions at which such substitutions are allowed
are determined by algorithms utilizing, inter alia, Hammett constants and proton affinity calculations (Figure 2a).
Hammett constants and steric indices are also used to vectorize certain reaction types for which statistics are abundant
enough to allow for Machine Learning (cf. vectorization of the popular and synthetically powerful Diels-Alder reaction
in Figure 2b,c). Moreover, when the conformations taken by the molecules matter for reaction outcomes, Molecular
Mechanics calculations are useful (e.g., to determine which types of intramolecular cyclizations are plausible,
Figure 2d).

Assuming the single-reaction rules are thus properly defined, they are first applied to only the target and produce
the first generation of substrates. These substrates (a.k.a. “synthons”) can then become the “targets” (a.k.a. “retrons”) of
progeny searches—that is, the reaction rules may be applied to them to produce the second-generation of substrates/
synthons. The process is iterated until all substrates of a given reaction operation meet some stop criteria (e.g., they are
commercially available). Such stop-substrates are no longer expanded and “solve” the retrosynthesis problem in that a
path linking them to the target molecule has been established.

This general scheme merits four important comments that also outline the order of our subsequent discussion:

i. The iterative expansions create a network delineating the space of synthetic options.
ii. This network can be extremely large. As described in,19 there are, on average, some 100 reaction rules that “match”

any given retron molecule without any cross-reactivity conflicts, and the network is expanding extremely rapidly,
with ~100n molecule nodes within n synthetic steps from the target.

iii. Given the network size, its navigation must be guided in the sense that, at each step, some algorithm (per the
nomenclature from Reference 19 a “scoring function”) must evaluate the sets of substrates and allow further expan-
sion of only the most promising ones. It should be noted that for advanced synthetic designs, the scoring scheme
may need to be more far-sighted than just one-synthetic-step-at-the-time and should be able to strategize over
multiple steps.22

iv. Assuming an adequately large collection of reaction rules (e.g., >100,000 expert-coded transforms currently in
Chematica), smart and strategizing scoring functions, and large collection of stop-point substrates, a good network
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search algorithm should be able to identify multiple and diverse synthetic plans. Indeed, in our practice with
Chematica, it has not been unusual to retrieve hundreds of plausible plans for a given target—in such cases, it is
also important to develop algorithms that present such pathways to the program's end user in some ranked order

FIGURE 2 Examples illustrating some of the methods to fine-tune SMARTS-encoded reaction rules. (a) An algorithm to predict

regioselectivity of aromatic electrophilic substitution. First, the molecule is divided into individual rings. Rings are classified as benzene/

heterocyclic, fused/single and the most active position within each ring is determined using Hammett constants and heuristics. Then, the

algorithm performs three-step filtering to remove the less active rings using additional heuristics, Hammett constants and pre-calculated

values derived from proton affinity. For details, see supplementary information to Reference 21. (b) To predict major diastereoisomers in

Diels-Alder cycloaddition (with possible syn and anti products; top), it is necessary to vectorize the substituents—and their

stereochemistry—at the reaction core (i.e., C=C–C=C and C=C). Here, this is illustrated for the syn product whereby substituents are

sequentially added into the vector following counterclockwise numbering. In each block, substituent pointing down the plane is added first.

The substituents are then featurized with electronic Hammett constants and steric TSEI indices. To ensure that the classifier does not

depend on the order in which substituents are traversed, an equivalent vector (based on the ring rotated 180� around the axis bisecting the

1–2 double bond) is created (bottom). Desired classifiers are then trained on this composite and symmetric representation. (c) Substituent-

based vectorization, this time for predicting of regioselectivity of Diels-Alder cycloaddition. Each substituent of the diene (R1-R6) and

dienophile (R7-R10) is featurized with Hammett constants (listed outside the red and green circles) and TSEI indices and placed in the

vector shown as “block” illustrated on the upper right. Internal sub-blocks represent sets of substituents associated with the “halves” of the
molecules. The product is encoded as “1” if molecules react head-to-head and “2” if head-to-tail. With the representations described in

(b) and (c), Random Forest classifiers trained on ~3000 literature examples achieved accuracy of ~90% (see Reference 23 from which part of

the figure is adapted with permission). (d) Examples of possible (black, green, orange, and blue) and impossible (red) SN2-type cyclizations

reported in the literature. Energy profiles along approximate cyclization coordinate are calculated with MMFF. The threshold for permissible

SN2-based cyclizations is set below the energy values traced by the red curve (see [20,21])
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reflecting their realistic costs. As we will see, the algorithms for computing such costs46 are also network-based but
traverse the already-generated network in the “opposite” direction, from stop-point substrates to the target.

3 | GRAPHS, SYNTHETIC POSITIONS, AND HYPERGRAPHS

We first consider how to represent individual chemical reactions in a manner compatible with the creation of a retro-
synthetic network. Say, a reaction produces product C from substrates A and B, A+ B ! C. In a network/graph nota-
tion, A, B, and C will correspond to the “molecule nodes” that need to be connected by the so-called “directed edges.”
One way to do so is to draw such edges from A to C and from B to C (Figure 3a)—this method, however, is inappropri-
ate as it may suggest that C can be made either from A or from B, whereas in reality it requires both A and B. The way
to overcome this problem is to introduce another type of a node, the “reaction node” representing the reaction opera-
tion and denoted in Figure 3b by a small diamond. In this so-called bi-partite representation, all causal relationships
between substrates and products are preserved—in our particular example, A and B together engage in reaction r1 to
yield C. With this notation, our retrosynthetic network can be represented as a directed graph (Figure 3c) of molecule
nodes (containing molecular structures stored as canonical SMILES) and reaction nodes (containing details of the reac-
tion operations).

During retrosynthetic planning, this graph grows with every iterative expansion of “current” targets (retrons) into
substrates (synthons). In principle, the expansion can continue almost indefinitely but in practice only up to several
millions of nodes can be “expanded” and evaluated in realistic times and stored in machine's memory. Still, the graph
may rapidly become very complex and may contain, for instance, synthetically unproductive cycles (e.g., in a simple
example in Figure 4a, red reaction arrows trace a directed cycle involving molecules “b”, “g”, and “j”). The existence of
cycles is, actually, a realistic problem encountered in several retrosynthetic platforms”—e.g., in Figure 4b, one such
cycle in highlighted within a simple synthetic plan produced by MIT's MCTS-based ASKCOS planner.49 Yet another
problem to consider in the context of synthetic graphs is that the synthetic distance—measured by the number of reac-
tions between any given molecules—may depend on the synthetic route. For instance, in Figure 4a, distance from the
target “a” to molecule “d” is just one reaction step (violet arrows) if used as part of a three-component reaction involv-
ing also “e” and “f”, but three steps (brown arrows) if used in a pathway though the “i” and “c” intermediates. Such
nonuniqueness is problematic in assigning “synthesizability” scores to the nodes.

FIGURE 3 Examples of synthesis graphs. A simple A+ B! C reaction represented as (a) a conventional graph and (b) a bi-partite graph.

In the latter representation, there are two types of nodes (larger circular nodes correspond to molecules, smaller diamond nodes to reactions

operations, here just one reaction node r1). (c) A larger bipartite graph describing several methods of making a substituted 3-pyrroline target.

Yellow = target; red = commercially available substrates; green = molecules already reported in the literature; violet - molecules unknown in the

literature. Here, the coloring is just for illustration but reflects the color scheme used in realistic searches in Chematica (see Figures 11 and 12).
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Such considerations made us rethink the representation based on individual molecule nodes and led us to the con-
cept of a “synthetic position.”19 In chess, the position is defined by the placement of all pieces on the chessboard. By
analogy, in synthetic planning, all substrates of a given reaction need to be considered in order to evaluate whether this
“retrosynthetic move” is promising—if only one substrate is “promising” but another is evidently hard to make or even
structurally impossible, there is no point in seeking the syntheses of the former. What this means is that the “synthetic
positions” we wish to evaluate should encompass sets of all substrates generated in a given reaction, and that the net-
work of retrosynthetic options should be a directed “hypergraph” of such “hypernode” sets. The semantics of the
hypergraph is illustrated in the right portion of Figure 5: The nodes of the hypergraph correspond to stages of synthesis,
and edges correspond to reactions that transform one set of substances into another set that may be obtained via a one-
step reaction operation. The problem of retrosynthesis therefore reduces to the optimal path problem widely studied in
computational graph theory and here aimed at finding some “optimal” synthetic route leading from the singleton set of
the target to any terminal nodes comprised of readily available starting materials.

4 | BASIC SCORING FUNCTIONS AND STOP POINTS

It should be emphasized that searching for the “optimal” synthetic pathway does not mean simply searching for the
shortest route. In real-world synthetic design, many factors need to be taken into consideration—for instance, it may be
preferable to perform an extra reaction but, by doing so, reach less expensive substrates; or one reaction may be prefera-
ble on account of being less technically cumbersome than some other type of chemistry, etc. In general, when scoring
the synthetic positions, it is necessary to evaluate both the molecules the algorithm encounters and the reactions that
yield them. In this spirit, Chematica has been using a scoring function that is intended to estimate and minimize the
“cost” of synthesis in terms of both chemicals and reactions. This function is a sum of two major components, each
based on a combination of chemically meaningful variables such as those summarized in Table 1:

4.1 | The Chemicals' scoring function

CSF evaluates substrate sets/synthetic positions leading to a given product/retron and promotes those sets that are com-
posed of the simplest molecules. For instance, variable RINGS sums the rings while variable STEREO sums the

FIGURE 4 (a) An example illustrating problems in uniquely defining synthetic distance within a retrosynthetic graph and the existence

of synthetically unproductive cycles (see main text for details). (b) A screenshot of a synthetic plan produced by MIT's ASCKOS program49 to

a relatively simple target (an analogue of Apatinib). A cycle present in this route is denoted by the red arrow. Panel (a) adapted with

permission from Reference 21 (Copyright 2018 Elsevier)
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stereocenters present in all molecules of a given substrate set (i.e., the hypergraph's node). Comparing different sub-
strate sets leading to the same product, the one minimizing these variables is preferred—in other words, the RINGS
and STEREO variables will promote substrate sets that, when all or some of their contents are reacted, increase the

FIGURE 5 Scheme of a synthesis graph (left) and (a part of) the corresponding synthesis hypergraph (right). The labels near hypergraph

edges indicate the corresponding reaction nodes in the synthesis graph. Note that more than one hypergraph edge might be related to a

single reaction from the synthesis graph (as is the case here for reaction r4). Figure reproduced with permission from Reference 21

(Copyright 2018 Elsevier)

TABLE 1 Key variables available in Chematica/Synthia to define CSF (green) and RSF (red) scoring functions

Variable Description

SMALLERγ Summed lengths of the SMILES strings of all substrates, each raised to some user-specified power γ

HOODγ More advanced version of the SMALLER variable. HOOD counts certain functional groups (whose
atoms are no to be disconnected) within the SMILES as one atom (e.g., O-tosyl group is counted as
a single ‘O')

STEREO Number of stereocenters in the substrates

RINGS Number of rings in substrates

CONFLICTS +1 of extra cost for each functional group incompatible with reaction conditions. It is recommended
to use this variable with a very high coefficient

PROTECTIONS +1 of extra cost for each functional group that needs to be protected

NONSELECTIVITY +1 of extra cost for each reaction having multiple reaction sites on a molecule. It is recommended to
use this variable with a very high coefficient

FILTERS +1 of extra cost for each reaction in a sequence in which a fragile functional group is carried along
the synthetic pathway. It is recommended to use this variable with very high coefficient

HIDE SMILES, HIDE SMARTS,
HIDE NAME

Variables to exclude certain molecules, molecular patterns, or keywords (i.e., keywords in reaction
names or reaction condition records)

TUNNEL_COEF A coefficient between 0 and 1 that reduces cost of c.a. 100 special, two- or three-step reaction
sequences transforming highly reactive functional groups into less reactive ones (e.g., a sequence
of reactions from an alkyl iodide to a silyl ether; see Figure 8b)

FGI_COEF A coefficient between 0 and 1 that reduces cost of reaction sequences that do not decrease molecular
complexity but help find “bypasses” around reactivity conflicts; see Figure 8c

STEP Variable increasing cost of reaction rules that are combination of several individual steps. For
instance, SAMP/RAMP alkylation entails three individuals steps (installation of chiral auxiliary,
alkylation and removal of chiral auxiliary) and so the cost increases thrice
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number of rings and/or stereocenters the most. Variable SMALLER, on the other hand, takes as argument the lengths
of the SMILES (“SMILES_LEN”) of all molecules in a given substrate set, raises them to some power n> 1, and then
sums them up, SMALLER¼P

substratesSMILES_LENn
i . In particular, for a given number of substrates, SMALLER

assumes minimal value when the disconnection is, per E.J. Corey's nomenclature,50 “central” and into like-sized frag-
ments. The preference for such central disconnections increases with increasing exponent n (e.g., if a retron is discon-
nected into two like-sized synthons, CSF will roughly scale as 1/2n+ 1/2n which is equal to 0.5 for n = 2 and only 0.25
for n = 3). When different putative reactions disconnect the molecule into different numbers of fragments, mul-
ticomponent reactions are generally preferred (e.g., dividing into two vs. three like-sized fragments will translate into
the SMALLER values scaling, respectively, as ~1/2n+ 1/2n vs. ~1/3 n+ 1/3n+ 1/3n, where the latter is smaller for n>
1). In addition, CSF algorithm is accompanied by routines that check if the substrate molecules contain any of the few
hundred hard-coded structurally forbidden motifs, e.g., small rings with unsaturated bonds, systems with double bonds
at bridgehead atoms, or highly strained bicyclic systems such as trans-cyclohexene oxide. Such molecules are eliminated
from consideration. In a broader context, the CSF strives to approximate the “cost” of making a molecule (i.e., the real
cost of substrates to which the algorithm is ultimately expected to navigate) and corresponds to the heuristic cost func-
tion of the vintage A*-type algorithms.51 Its role it to guide the search toward less complex molecules, thus avoiding
exponential branching and searching parts of the unpromising regions of the solution space.

4.2 | Reaction scoring function

In its basic variant, the Reaction Scoring Function, RSF, is calculated for each reaction performed by the program and
approximates the “cost” or difficulty of a particular reaction operation. Such assessments are possible because each of
the expert-coded reaction rules in Chematica is accompanied by extensive lists of functional groups that, based on
mechanistic considerations, are judged incompatible with a given reaction or groups that need to be protected before
the reaction proceeds—as mentioned in the introduction, this is one of the key advantages of expert-coded rules over
machine-extracted ones, because it considers impossible reactions that are virtually never reported in the literature. For
example, an imine group present in any of the substrates is strictly incompatible with aldehyde reduction reaction
because it would be reduced to an amine; an alcohol or phenol may be used in a Grignard-type reaction but only if it is
first protected (“masked”), etc. To quantify such chemical “conditionals” and in addition to a certain standard cost of
performing a reaction operation, RSF's variable CONFLICTS adds +1 to every incompatible group detected. When
CONFLICTS is multiplied by some very high coefficient, it effectively removes any conflict-bearing reactions from con-
sideration. Variable NONSELECTIVITY uses a similar scheme to penalize reactions that can proceed in more than one
place of the same molecule, in effect decreasing the yield of reaction at only the desired location—typically, this vari-
able is also used with highly penalizing coefficient, but its value sometimes can be lowered to allow for more syntheti-
cally “creative” solutions (cf. Sarpong's analyses in Reference 36) assuming that some nonselectivity problems can be
circumvented by judicious choice of reagents and reaction conditions. Variable FILTERS is another variable with
high-cost coefficient as it serves to penalize steps that drag along fragile functional groups, instead of reacting them
immediately after formation. In contrast, variable PROTECTIONS (which adds +1 for every group that needs protec-
tion) is typically multiplied by a moderately valued coefficient and therefore assigns a smaller penalty/cost to reactions
that require protection, in effect preferring—but not mandating—those that are protection-free (naturally, a very high
value of the coefficient will remove such reactions altogether and the algorithm will then seek only the protection-free
routes which are desirable52 but not always possible). Algorithmically, the RSF mirrors the edge cost function of “classi-
cal” graph search algorithms such as A*51 or Dijkstra.53

In Chematica, the scoring functions can be flexibly defined in a calculator-like panel as algebraic combinations of
variables discussed above and in Table 1, and with weights reflecting the user's preferences. Irrespective of these func-
tions' specifics, however, the search routines (cf. next section) will always seek syntheses that minimize the overall cost
prescribed by the sum of CSF and RSF. As a rule of thumb, giving higher weight to the RSF will increase the cost of per-
forming reactions relative to the cost of chemicals, resulting in the algorithm seeking shorter routes even at the expense
of more expensive substrates.

As an example, a scoring function we have commonly used, FUNCTION1 ¼CSF1þRSF1 ¼ SMALLER3þ60þ120�
PROTECTIONþ1,000,000� CONFLICTSþNON_SELECTIVITY þFILTERSð Þ will strongly prefer central disconnec-
tions (SMALLER to the cube power), and eliminate any reactions suffering from cross-reactivity conflicts, nonselectivity
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issues, or those in which chemically unstable groups are dragged along (all such reactions are heavily penalized by the
1,000,000 coefficient). If reactions entail no such problems, this function will add an only moderate cost of performing a
reaction operation (60 and, if a reaction requires protection, 120). In effect, this function will be able to seek longer
routes starting from inexpensive substrates. By contrast, FUNCTION2 ¼CSF1þRSF2 ¼ SMALLER3þ60,000þ
120,000�PROTECTIONþ1,000,000� CONFLICTSþNON_SELECTIVITY þFILTERSð Þ will heavily promote the
shortest routes on account of the 60,000 and 120,000 RSF costs of performing any problem-free reactions (such routes
will stop at virtually any available substrates, even the ones that are very expensive).

On the last note, the stop-point substrates can be of two kinds—they can be chemicals that are either commercially
available (in default version, from Sigma-Aldrich catalog although other catalogs can easily be configured) or those
whose synthesis (or syntheses) is known. In the first case, the molecule comes with an actual catalog price rescaled to
dollars per unit quantity and the user can specify that he/she is interested in stopping only at molecules that are below
a certain threshold price. In the second case, the molecules are characterized by the so-called synthetic popularity mea-
sure19,54,55 which quantifies the numbers of literature-reported reactions in which a given molecule has been used. The
user can then select as stop points only the molecules for which the synthetic popularity measures are high, the ratio-
nale being that if such molecules are not in the Sigma-Aldrich catalog, they are widely used and can be readily synthe-
sized. As could be expected, for molecules for which both measures are available, the price correlates with synthetic
popularity—what this means is that the algorithm can stop at some commercially and some synthetically popular
substrates, and the latter measures can be converted, at least approximately, to dollars per unit quantity.

5 | BASIC SEARCH ALGORITHM

Let us first illustrate the basic version of the A* search algorithm, one that Chematica used until ca. 2017/2018 and orig-
inally described in the supplementary information to21 (see also the pseudocode of a sequential version of this algo-
rithm in Figure 6). Starting from a desired target, the exploration of the synthesis graph and its induced hypergraph is
guided by the constantly updated CSF+ RSF sums. The hypergraphs' vertices (i.e., sets of currently available substances
that further need to be synthesized) are CSF-RSF-scored and stored in the so-called priority queue, PQ, implemented as
a binomial heap56 (which is a data structure offering high efficiency of insert operations). The individual substances
within the most promising (i.e., lowest CSF+ RSF score) hypernodes are expanded by the application of all retro-
synthetic reaction rules matching a given substance. A single expansion operation produces all synthetic options one
reaction away from the molecule being “expanded”; in reality, the process is parallelized and many molecules are
expanded simultaneously with the results collected and managed by a multi-processing service. This process is contin-
ued iteratively until the search reaches substrates that meet the stop-point criteria. When this happens, a synthesis
pathway is established as a hyperpath through the hypergraph (though, of course, it is also retrievable from the synthe-
sis graph).

This general scheme merits several comments. First, to avoid querying the same chemical node for retrosynthetic
expansion several times and to know when a molecule's expansion into immediate synthons can be used for hypernode
expansion, we keep track of the statuses of all nonterminal molecules, as illustrated in Figure 7 and defined as:
EXPLORED, when already successfully expanded for possible retrosynthetic steps; EXPLORATION-IN-PROGRESS,
when the node is being expanded but results have not yet recovered; and UNEXPLORED, when the node has not yet
been queried for retrosynthetic expansion. In addition, we keep track of the “synthesizability status” of molecules
which can be propagated “upwards” in the synthesis graph while the status of any node has changed: COMPUTED
means that the node already has (at least one) computed synthesis—that is, the molecule is a terminal stop-point of the
search (e.g., commercially available) or all substrates necessary to synthesize this molecule via some reaction are COM-
PUTED; NONSYNTHESIZABLE means that this node is EXPLORED and has no incoming reactions or all of the reac-
tions producing it have some substrates which are NONSYNTHESIZABLE; NOT-COMPUTED otherwise. Hypernodes
containing substrates which are NONSYNTHESIZABLE are not further expanded. Furthermore, keeping track of these
statuses also allows us to detect when the algorithm identifies the first completed synthesis—this happens when the
target becomes COMPUTED.

Second, when the algorithm reaches the stop-point (terminal) chemical nodes, their CSF values are replaced by
actual/catalog costs, which are then propagated “upwards” through the graph of COMPUTED molecules, gradually
replacing the CSFs (which, as we discussed before, serve only as estimates of the real cost during the searches). We will
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discuss the upwards propagation in detail in Section 7, where this procedure will allow us to rank the pathways, if mul-
tiple such pathways are found.

Third, our search protocol avoids becoming stuck in the same regions of the synthetic space—specifically, as it
keeps visiting hypernodes sharing the same “history” of expansions (i.e., similar fragments of already examined syn-
thetic routes), penalties are being added to their CSF+ RSF. In this way, these synthetic proposals are becoming less
and less desirable, ultimately forcing the search to withdraw and explore elsewhere.

6 | MULTISTEP STRATEGIZING, ADVANCED SCORING, AND IMPROVED
SEARCH ALGORITHM

With the algorithm and scoring functions described thus far, Chematica was able to construct syntheses to nontrivial
drug molecules21 such as in the example in Figure 1a. However, even upon significant expansion of its reaction knowl-
edge base (to >100,000 expert-coded reaction rules), application of additional variables in the scoring function
(e.g., those reflecting Corey's rules on synthesis logic50), or the use of state-of-the-art NN-based scoring functions,40 the
program was still not able to find routes to really complex targets, especially natural products, and if it happened to find
a route, it was often roundabout and unremarkable.

Analysis of Chematica's failures in such advanced-level syntheses revealed that the program was not able to “think”
in an expert-like, farsighted manner—in particular, it did not know when and how to strategize over multiple steps and

FIGURE 6 A Python language pseudocode of a sequential version of the basic A* search algorithm. Supplementary information to

Reference 22 provides a more detailed pseudocode, describing one-step, retron-to-synthons expansions (“spiders”), and construction of

descendant hypernodes of a given hypernode

FIGURE 7 A sample synthesis graph illustrating various statuses of molecules updated during search. Nodes marked S denote

“terminal” starting materials meeting the stop conditions; other nodes are nonterminal and can have statuses EXPLORED = E or

UNEXPLORED = U. NONSYNTHESIZABLE molecules (i.e., ones which are expanded but have no incoming reactions or all reactions

producing them have some NONSYNTHESIZABLE substrates) are in blue, COMPUTED (i.e., terminal or having at least one incoming

reaction with all COMPUTED substrates) in red and NOT-COMPUTED in yellow.
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sometimes pursue steps that, individually, offered no structural simplification but could open-up elegant synthetic pos-
sibilities at the later stages of planning. Accordingly, we set out22 to furnish the program with “multistep logic” such
that it would recognize when certain reaction choices imply succession (or elimination) of other transformations. Such
causal relationships are key for the so-called Artificial Generalized Intelligence,57,58 AGI, and we hoped that with their
inclusion the program could mimic better the synthetic designs by human experts. Taking inspiration from classic total
syntheses, we implemented four modalities of multistep strategizing:

(1) We taught Chematica when to pursue two-step sequences in which the first one (in the retrosynthetic direction)
increases structural complexity but, by making such an “investment,” enables a disconnection offering high degree of
structural simplification (Figure 8a). Only few hundreds of such “tactical combinations,” TCs, had been known before
but we used big-data analysis of all possible reaction combinations to discover additional millions34—some 100,000
most useful of these TCs were then included in Chematica, allowing the program to efficiently (and often elegantly)
overcome local maxima in structural complexity.

FIGURE 8 Multistep strategizing modalities to facilitate Chematica/Synthia's advanced-level planning. (a) Tactical combinations help

navigate over intermediate synthons that are more complex than retrons. Overcoming such local complexity maxima allows the search to

reach much simpler, downstream synthons. Here, the structural complexity of the diol target is first increased by introducing an additional

ring (transforming the diol into a five-membered lactone). This “uphill” step, however, is not unproductive as it enables a stereoselective
conjugate alkenylation-alkylation controlled by the structure of the substrate. This transformation disconnects the complex intermediate into

three much simpler substrates, in the process removing two stereocenters. The parts of the molecules common to both reactions in the

sequence (reaction core) are colored green. (b) Examples of “tunnel” sequences converting molecules (marked red) with highly reactive

functional groups (here, alkyl and vinyl iodides, an aldehyde) into more stable ones (marked green) featuring an ester, an alkene or a silyl

ether. Two-step “tunnels” shown here are traced by red, green, and blue reaction arrows over blurred backgrounds. (c) Navigation around

reactivity conflicts. When Chematica encounters an elegant, structure-simplifying disconnection (here, Cu-catalyzed conjugated addition;

crossed red arrow) but cannot execute this particular reaction because of a reactivity conflict, it first tries to perform a functional group

interconversion to remove this conflict (here, by exchanging the highly electrophilic aldehyde into a ketal or a terminal alkene (arrows

colored gray) and only then retries the promising disconnection (green arrows). Without taking such bypasses, the program would pursue a

much less productive/simplifying step marked by the blue arrow. (d) Simultaneous and tandem reactions implemented in Chematica for,

inter alia, the management of protecting groups. In the scheme on the left, silylation of both primary and secondary alcohols can be

performed in a single step. If performed step-wise, the program would consider the unprotected primary alcohol as a reactivity conflict;

sequential primary-then-secondary protection could be possible but inefficient. In the scheme on the right, the removal of t-butyl ester and

Boc protection from the amine can be achieved simultaneously, in one step. If performed step-wise, the unprotected group would be

(correctly) seen as also reactive, and Chematica would penalize such steps. Panel (a) adapted with permission from Reference 34 (Copyright

2020 Elsevier) and panel (b), from Reference 22 (Copyright 2020 Springer Nature)
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(2) We implemented into the program a smaller number, ca. 100, of two- or three-step reaction sequences
(Figure 8b) commonly employed in total synthesis on natural products.59 Considered individually, the steps within
these “tunnel” sequences appear futile but when taken together, they serve to convert highly reactive groups into more
stable ones, overall reducing the numbers of reactivity conflicts and enabling additional synthetic options.

(3) We introduced routines that allowed Chematica to navigate around some types of reactivity conflicts. Previously,
the program had no means of pursuing elegant, structure-simplifying options that entailed a cross-reactive group—we
now taught the machine to probe “bypass” sequences to first try a functional group interconversion, FGI, and resolve
the conflict, and only then retry the promising step (Figure 8c).

(4) Finally, we allowed the program to perform simultaneous and tandem reactions which, under given reaction
conditions, could proceed in one rather than multiple reaction steps (Figure 8d). A sub-class of these improvements
related to the all-important protection group management and, in particular, ability to perform multiple suitable protec-
tions or deprotections in one step (in this case, the protection and deprotection operations were treated explicitly, as
actual reactions and not only as “need to protect” flags used in earlier versions of Chematica).

In Chematica, these multistep routines can be activated either as on/off options (e.g., use or do not use TCs) or as
additional variables in the RSF, for example, FGI_COEF and TUNNEL_COEF variables (see Table 1) that take values
between 0 and 1, and serve to reduce the cost per step and thus facilitate reactions included in “tunnels” or “bypasses.”

FIGURE 9 Sample hypergraphs illustrating operation of a standard A* algorithm versus our modification using BeamPQ. Numbers

inside the hypernodes denote their costs used by the queues. In (a), the hypernodes currently stored in a PQ are filled in blue. A* would pop

from an ordinary PQ a hypernode with score 5, while from a BeamPQ with width W = 2, it would pop the node with a higher score, 8, but at

lower depth. Panels (b–d) all have the same part of a hypergraph but searched using different methods: (b) a standard A* algorithm, (c) one

using our BeamPQ with W = 2, (d) one using a BeamPQSet with two BeamPQs with W = 1. In each panel, hypernodes that were popped for

expansion are on colored backgrounds. Numbers next to the hypernodes specify the order in which these nodes were selected. In (d), the

costs used by the two queues for going “deep” and “wide” are shown inside the hypernodes in, respectively, black and red. The hypernodes

popped from these queues and returned by BeamPQSet are on blue and green backgrounds, respectively. In (b–d), the only terminal node is

shown in red
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With these additions, a typical scoring function might look like FUNCTION3 ¼CSF1þRSF3 ¼ SMALLER3þ60�
TUNNEL_COEF �FGI_COEF �STEPþ1,000,000� CONFLICTSþNON_SELECTIVITY þFILTERSð Þ where the second
term lowers the cost of reaction operation, 60, for “tunnels” and FGI “bypasses” (but increases it using the STEP vari-
able if a reaction operation entails multiple sub-steps, e.g., SAMP/RAMP alkylation entails three individuals steps,
installation of chiral auxiliary, alkylation, and removal of chiral auxiliary).

With the inclusion of multistep strategies, the program performed better but with the basic search algorithm
described earlier, the searches were still prohibitively long (often timing out) and also not predictable in terms of the
scoring functions to be used. In particular, we noticed that for some complex targets, CSF functions such as
SMALLER 3—forcing more central disconnections and trying to reach simple substrates as soon as possible—were per-
forming well but in some other cases, they also timed-out without finding any routes. In such failed searches, the algo-
rithm rapidly decreased the CSF to reach molecules that could no longer be easily simplified—it then became stuck in
some unpromising areas of the search space, typically at large search depths. These problems could sometimes be
remedied by scoring functions allowing for more peripheral cuts and thus “broader” rather than “deeper” searches
(e.g., CSF = SMALLER 1.5) but the times to find the solution were prohibitively long—the search depth increased too
slowly for some longer pathways to be found on reasonable timescales.

Our first approach to improve performance was to force the algorithm to explore the search space more broadly,
even when “deep”-searching CSF functions (like SMALLER 3) were used. To achieve this, we implemented a novel,
beam-search-inspired priority queue (BeamPQ; for pseudocode, see SI to22) replacing standard PQ in the simple A*
algorithm. As we have seen in Section 5, selecting a hypernode for expansion from a standard PQ always returned the
lowest-scoring/“cheapest” hypernode stored in it. By contrast, BeamPQ, ensures that before the cheapest hypernode is

FIGURE 10 A Python language pseudocode of a BeamPQSet priority queue that uses internally several BeamPQs. For details on the

implementation of a BeamPQ priority queue, see the pseudocodes in the supplementary information to Reference 22
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selected, a given number (called beam width, W) of the best-scoring hypernodes at each lower depth must be already
tried (Figure 9a). In more detail, BeamPQ internally keeps a standard PQ, but also remembers W cheapest hypernodes
pushed onto it at all search depths; it also keeps track of hypernodes that have not yet been selected for retrosynthetic
expansion. The algorithm first chooses the cheapest hypernode n from the internal PQ. If there are no “remembered,”
not-yet-selected hypernodes at lower depths than the depth of hypernode n, then n is returned. Otherwise, the cheapest
such remembered node m at the lowest depth is returned and n is pushed back onto the internal PQ. Of course,
BeamPQ also keeps track of which nodes it has already returned and makes sure that the same node is not returned
twice (e.g., once as m and then as n as above). The difference between our basic and BeamPQ algorithms are illustrated
in Figures 9b,c using the same hypergraph and the first six hypernodes selected from a queue. In Figure 9b, the basic
A* search with an ordinary PQ rapidly descends to higher search depths and, because it never expands the hypenode
with nonminimal cost 14 at depth 1, it is unable to find the terminal hypernode (colored red). By contrast, in Figure 9c,
A* using BeamPQ with width W = 2 expands both hypernodes at depth 1 before it proceeds deeper—as a result, it can
“overcome” high-cost node 14 and ultimately reach the terminal red node.

Although this algorithm gave results chemically better than our basic searches, it was still prone to becoming stuck
at higher search depths. In a further effort to improve it and analyze more like a human expert, we wanted it to (i) to
simultaneously probe different synthetic options “widely” yet pursue more “deeply” those that appear most promising;
and (ii) all along, allow the different search strategies to exchange their “experiences” and learn from each other's
results.

We achieved this by using a “composite” priority queue which internally keeps a set of BeamPQs (BeamPQSet),
each using hypernode costs computed by a different CSF. When the algorithm selects hypernodes for retrosynthetic
expansion (using a pop method according to the pseudocode in Figure 10), it does so from each internal queue in
turn—for instance, in case of two queues, BeamPQ1 and BeamPQ2, the first selection is done from BeamPQ1, the sec-
ond from BeamPQ2, the third again from BeamPQ1, and so on. This said, if selection from an internal queue yields a
hypernode that has already been selected by another internal queue and returned by the BeamPQSet, the algorithm
rejects such a hypernode and tries selecting from the same queue until a hypernode not returned before is found or the
queue becomes empty (in which case it tries to select from the next internal queue). Overall, the algorithm can follow
several different search strategies defined by the CSFs of the internal queues. Moreover, when a new hypernode
(resulting from expansion of its parent hypernode) is added to BeamPQSet, it is added to all of the inner BeamPQs with
scores computed by the CSFs for these queues (see the push method of BeamPQSet in Figure 10)—this allows these
individual search strategies to share their results.

In a typical scenario, two BeamPQs are used: BeamPQwide with a CSF scoring function preferring wider exploration
(e.g., SMALLER 1.5) and BeamPQdeep with a CSF preferring deeper searching (e.g., SMALLER 3). When used together,

FIGURE 11 Chematica-planned synthesis of conidiogenone B, a complex cyclopiane diterpene featuring a challenging 6-5-5-5 ring

system and six contiguous stereocentres (of which three are quaternary). This 14-step synthesis relies on intramolecular alkylations to

construct five-membered rings and Diels–Alder cycloaddition to build the six-membered ring. When planning this route, it was essential for

Chematica to employ multistep strategies—in the screenshot of the pathway's graph (shown on the top), these strategies are marked by pink

and red reaction arrows. Figure reproduced and caption adapted with permission from Reference 22 (Copyright 2020 Springer Nature)
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the first queue helps discover promising beginnings of routes (e.g., hypernodes which make it to the list of W best-
scoring ones for BeamPQdeep at lower depths) whereas the second strives to “finish” these syntheses off. This is illus-
trated in Figure 9d where, for simplicity, the widths of both queues are assumed as W = 1 (in realistic searches,
Chematica uses W = 200–500). The first selection (of the root hypernode) is arbitrarily done from BeamPQdeep, followed
by selection from BeamPQwide which assigns the chosen hypernode with the score/cost of 2 (according to BeamPQdeep,
this node has score of 12, as indicated by the number in the upper portion of the node). The next hypernode is from
BeamPQdeep and has score 11 (3 according to the “wide” search). This is followed by selection from BeamPQwide of a
hypernode with score 2 (14 according to the “deep” search). As this hypernode is expanded, and its descendants are
pushed onto both queues, the previously cheapest hypernode at search depth 2 (i.e., one previously scored at 11/3)
ceases to hold the “record” status and is supplanted by the hypernode for which the BeamPQdeep score is equal to 9. This
illustrates the cooperation between the two strategies in the sense that a more promising beginning of a pathway sought
by BeamPQdeep is found at depth 2 thanks to BeamPQwide. The next selection is from BeamPQdeep and is the hypernode
with score 9 (rather than hypernode with lower score 8 but at depth 3). Then, after the hypernode with score 9 is
expanded and BeamPQwide returns the hypernode with scores 12/3, the hypernode with cost 7 is selected from
BeamPQdeep, and expanding it leads to a solution being found (red-colored terminal node).

A notable addition to this overall scheme was that in order to increase search diversity, we limited the number of
retrosynthetic options suggested upon expansion of any molecule node (typically, to ca. 20 top-scoring reactions). While
this might sound paradoxical, it is actually easy to rationalize—without such a limit, it could happen that the hundreds
of synthetic options emanating from one or few specific retrons gave rise to enough hypernodes to “fill in” the entire
width W of a BeamPQ. If this happened, the strategies probed by the program could all share the same few retrons and
the diversity of solutions would be poor. By imposing the limit, we made it more likely that the W hypernodes at every
search depth comprised structurally diverse molecules, ultimately translating into more diverse syntheses being probed.

With these improvements, the program finally became adept in identifying chemically sound routes to even very
complex targets. We documented this in22 where Chematica—using only its default scoring functions based on the
abovementioned “deeper,” SMALLER 3, and “wider,” SMALLER 1.5, CSFs and a standard RSF—designed syntheses to
ca. 30 complex natural products, at the forefront of modern synthesis (Figure 11). In addition to validating three total
syntheses by experiment (as in the example shown in Figure 1b), we mixed the set of 20 Chematica-designed paths and
20 similar-complexity total syntheses from recent literature. We then asked 18 world's top-level synthetic experts to vote
whether a particular path was of human versus machine origin, and also to rank its subjective elegance on a 1–10 scale.
The experts' scores were similar for both human and machine syntheses, meaning that Chematica passed a form of a
Turing test (for all routes, detailed metrics and results, see Reference 22 and its Supplementary information).

7 | SELECTION AND RANKING OF PATHWAYS

In the said work on natural products, we aimed to mimic the most common uses of Chematica by synthetic chemists
whereby only default-scoring functions are applied and only the top-scoring solution is usually examined.36 However,
the stringent criterion of using default settings and analyzing just the best-scoring path does not harness one of the key
advantages of computerized synthesis, namely, that the machine can produce many valid pathways, differing in the key
disconnections and in the overall strategy of assembling the target. In our practice with Chematica, we have routinely
seen the program produce tens of diverse and chemically valid plans to mid-complexity targets and often multiple mate-
rially different solutions for complex ones (see Figure 12 for examples of alternative syntheses of tacamonidine found
by Chematica upon applying a variable penalizing specifically the Pictet-Spengler cyclization central to the route from
the Figure 1b). This said, we also observed many roundabout or repetitive solutions which, if not properly scored and
ranked, would only serve to pollute the list of useful results. Mindful of such considerations, we implemented46 algo-
rithms that (i) selects portions of the searched networks that span only the productive syntheses found during a given
search; (ii) score and rank theses syntheses according to a metric more realistic than the CSF and RSF functions (which,
as we discussed, only roughly approximate the actual cost while searching for routes); (iii) penalize pathways that are
similar to each another; and (iv) present to the user a limited number of routes that are both economical and diverse.

In brief, within the post-search reaction network (Figure 13a), we retain only the “synthesizable” molecule nodes
(i.e., molecules for which there exists a route connecting them with the stop-point substrates) and “viable” reaction
nodes (i.e., reactions for which all substrates are synthesizable) (Figure 13b). We then retain only those nodes that are
ancestors of the target and the target itself (Figure 13c). As defined in,46 the cost of each molecule node within this
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“solutions graph” is the smallest cost of all syntheses that can make some desired quantity of this chemical; the cost of
a reaction node is the smallest cost of all synthetic routes containing this particular reaction and giving this reaction's
product at a desired scale.

Following these definitions, for each nonstarting-material chemical, c, in the network, its cost is calculated recur-

sively as cost cð Þ¼minr � pred cð Þ cost rð Þð Þ, while for each reaction node, cost rð Þ¼ fixed_cost rð ÞþP
c � pred rð Þ

cost cð Þ
yield rð Þ, where

FIGURE 12 Examples of alternative syntheses of tacamonidine proposed by Chematica. Color coding of the nodes is the same as in

Figure 1. Synthesis (a) starts with Friedel-Crafts acylation of tryptamine. This is followed by alkylation of the ketone60 controlled by a chiral

hydrazine, Sharpless' dihydroxylation, and reduction of the cyclic imine61 (subsequent steps assemble the remaining rings). Routes in (b,c)

rely on the formation of a chiral amine (controlled by Ellman's sulfonamide) via addition of an organometallic reagent derived from

2-iodoindole or reduction of an acyclic ketimine. We observe that in (b), indole addition to chiral sulfinylimine requires the formation of a

dianion, or introduction of N-protecting group. In both plans, remaining stereocenters are formed using Evans-type auxiliary to control

enolate alkylation62 and Sharpless' asymmetric dihydroxylation. Synthesis in (d) starts from 2-allylaniline. The 6-5-6 ring system is formed

via a copper-catalyzed carboamination of the alkene.63 The key step is an intramolecular conjugate addition64 followed by late-stage indoline

and alkene oxidations. For pathway details and discussion, see section 3.12 of the supplementary information to Reference 22 from which

the figure is reproduced and caption adapted by permission (Copyright 2020 Springer Nature)
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fixed_cost rð Þ is the cost of performing synthetic operations at some unit scale, pred denotes the set of predecessors of a
given node in the network, and yield rð ) denotes estimated reaction yield (of note, for diverse reaction types, the yield
values are hard to predict accurately by either ML or thermodynamic models65–67 and in the context of route selection
we consider here, it is more practical to use some average values, like, the 75–80% average yield of all organic reactions
reported in the literature67).

The working of the recursive formula is illustrated by the example in Figure 14. Assuming for simplicity that all
reactions therein have the same yield (say, 50%), we first consider the (left) branch of the network starting from a sub-
strate whose cost per mmol is 3. This cost is propagated upwards, to the violet-node intermediate as 1+ 3/50% = 7,
meaning that in order to make 1 mmol of this intermediate, it is necessary to use 2 mmol of the starting material and
pay the cost of 1 for performing the reaction (reaction costs are shown inside the diamond-shaped reaction nodes). For
the right branch of the network, the two substrates cost, respectively, 1 and 2 per mmol, and the unitary cost of reacting
them is 2. Accordingly, making 1mmol of the violet-node intermediate will cost 2+ (1+ 2)/50% = 8. Next, the costs of

FIGURE 13 Selection of cost-effective yet diverse pathways from a graph explored during synthetic search. For the sake of illustration,

we assume here 50% yield for all reactions. (a) The entire postsearch reaction network. Yellow = target, red = commercially available

substrates with numbers denoting hypothetical costs converted to “per mmol.” Costs of reaction operations are indicated in the diamond-

shaped reaction nodes. Some of the space probed by the search algorithm involves nodes that did not ultimately lead to complete syntheses

of the target (in reality, the majority of the network is of this type). In (b,c) such molecule and reaction nodes are removed. In (d), the costs

of nodes in the remaining “solutions” subgraph are recursively propagated from starting materials to the target. In (e), the lowest-cost

synthesis (green) is found and in (f) its reactions are penalized by P = +5 (red numbers) to increase diversity of additional solutions.

Question marks denote nodes whose costs increase upon addition of the penalty. Costs of these nodes are recalculated as in (g). In panel (h),

the new “best” synthesis is identified. Additional routes can subsequently be found by repeating the penalization-selection cycle.

Figure reproduced and caption adapted from Reference 46 with permission (Copyright 2019 Royal Society of Chemistry)

FIGURE 14 An example illustrating recursive propagation of costs (assuming, for simplicity, all yields to be 50%). White numbers inside

the red molecule nodes denote costs of these starting materials (per mmol). Numbers inside diamond-shaped reaction nodes specify fixed

costs of synthetic operations at unit scales. Figure reproduced and caption adapted from Reference 46 with permission (Copyright 2019

Royal Society of Chemistry).
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the two intermediates thus calculated are propagated further upwards, to derive the cost of making 1mmol of the tar-
get, 1+ (7+ 8)/50% = 31. It is easy to confirm that the result of this recursive calculation is the same as for traditional
chemical balancing, whereby to make 1 mmol of target, 4 mmols of each substrate need to be used (chemicals' cost
4�3+ 4�2+ 4�1 = 24), and the two reactions using the substrates are performed at double the scale of the final reaction
yielding the target (reactions' cost 2�1+ 2�2+ 1�1 = 7).

Returning to Figure 13d, once the costs of all nodes are recursively propagated, the least expensive synthetic path is
identified by tracing from the target to the substrates and, at each depth, choosing the lowest-cost reaction (e.g., 11
followed by four in Figure 10e). Although the graph can now be re-searched to return n best-scoring pathways, this
approach does not ensure the chemical diversity among the selected routes. To enforce such diversity, the algorithm
iterates the following loop until it identifies a desired number of routes (or until no more syntheses can be found):

(i) Add penalty P (e.g., +5 in Figure 13f) to the fixed costs of each reaction from the most-recently found synthesis;
(ii) Identify all molecule and reaction nodes that are affected by the penalization (nodes marked by question marks

in Figure 13f);
(iii) Recalculate the costs of all affected nodes (Figure 13g)
(iv) Select the newest lowest-scoring route and (Figure 13h) and go back to (i).

Examples of pathways found with and without the diversification routine can be found in.46 Therein, the reader will
also find additional details of the algorithm (e.g., avoidance of cycles, some limiting behaviors) as well as performance
metrics. On the latter topic, we note that the times to select a given number of ranked syntheses scale approximately
linearly with the size of the synthesis graph. Even for large graphs and on a standard machine (e.g., one with 2.5 GHz
AMD Opteron 6380 processors), these times are on the order of seconds, which is insignificant compared to the times
of synthesis searches (minutes to hours).

8 | SUMMARY AND OUTLOOK

The selection and diversification routines complete the portfolio of graph-based algorithms we have used in
Chematica/Synthia's advanced-level synthesis planning. Development of these algorithms has spanned over a decade of
research and has, to a large extent, followed a cycle of algorithm development and testing in increasingly more complex
syntheses. The solution thus created rests on many pillars, each of which is essential for Chematica's synthetic
prowess—the conflict-aware reaction rules, the MM, QM, and ML routines fine-tuning applicability of rules, the
graphs, hypergraphs and scoring functions to represent and evaluate synthetic positions, the multistep routines to plan
further than just one step ahead, the network searches querying the space of synthetic solutions according to multiple
search strategies, and the selection-diversification algorithms.

With this “hybrid” approach, computers have finally achieved the level of human synthesis experts. This said, we
do recognize the need (and opportunity) for additional improvements, though mostly in some technical aspects—for
instance, further (and ongoing) augmentation of the reaction rule set, acceleration of routines that examine stereo-
chemistry of complex molecules (which has been the slow component of Chematica's searches), or further fine-tuning
of reaction rules with routines to rapidly evaluate transition states (e.g., to eliminate unfeasible cyclizations36). In a
broader context, we hope the solutions we described here will also resonate with colleagues developing purely data-
driven, ML retrosynthesis algorithms. We anticipate that Chematica-like search and scoring schemes could help
improve the performance of these programs and allow them to tackle targets more complex than currently. This focus
on complex targets is important. Indeed, our experience tells us that mostly complex targets are of interest to the
demanding audience of synthesis experts who are unlikely to use any retrosynthetic planners unless they offer help
them with advanced—and not the trivial—problems.
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