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Abstract: An enzymatic route for phosphorous–carbon bond formation was developed by discovering
new promiscuous activity of lipase. We reported a new metal-free biocatalytic method for the
synthesis of pharmacologically relevant β-phosphonomalononitriles via a lipase-catalyzed one-pot
Knoevenagel–phospha–Michael reaction. We carefully analyzed the best conditions for the given
reaction: the type of enzyme, temperature, and type of solvent. A series of target compounds was
synthesized, with yields ranging from 43% to 93% by enzymatic reaction with Candida cylindracea
(CcL) lipase as recyclable and, a few times, reusable catalyst. The advantages of this protocol
are excellent yields, mild reaction conditions, low costs, and sustainability. The applicability of
the same catalyst in the synthesis of β-phosphononitriles is also described. Further, the obtained
compounds were validated as new potential antimicrobial agents with characteristic E. coli bacterial
strains. The pivotal role of such a group of phosphonate derivatives on inhibitory activity against
selected pathogenic E. coli strains was revealed. The observed results are especially important in
the case of the increasing resistance of bacteria to various drugs and antibiotics. The impact of
the β-phosphono malonate chemical structure on antimicrobial activity was demonstrated. The
crucial role of the substituents attached to the aromatic ring on the inhibitory action against selected
pathogenic E. coli strains was revealed. Among tested compounds, four β-phosphonate derivatives
showed an antimicrobial activity profile similar to that obtained with currently used antibiotics
such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained compounds constitute
a convenient platform for further chemical functionalization, allowing for a convenient change in
their biological activity profile. It should also be noted that the cost of the compounds obtained is
low, which may be an attractive alternative to the currently used antimicrobial agents. The observed
results are especially important because of the increasing resistance of bacteria to various drugs
and antibiotics.
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1. Introduction

The struggle with infections caused by antibiotic-resistant pathogens poses a signifi-
cant threat to global health [1,2]. It has been estimated that by 2050, 10 million worldwide
deaths could result from antibiotic resistance, making it deadlier than cancer and resulting
in a global economic output cost of USD 100 trillion [3]. Consequently, tackling antimicro-
bial resistance and searching for new antimicrobial agents will always remain a challenge
and a reason for intensive work by medicinal chemists.

Phosphonates are important structural building blocks of several natural products
and are also considered one of the most commonly encountered compounds in medicinal
chemistry. Phosphonate derivatives possess diverse chemotherapeutic activities, which
include enzyme inhibition [4], peptide mimics [5], and anti-microbial [6] and anti-fungal
activities [7]. Similarly, nitrile-containing medical agents have emerged as the number of
anti-microbial pharmaceuticals has increased [8–10] (Figure 1). The prevalence of nitrile-
containing pharmaceuticals and the continued stream of potential agents in the clinic attest
to the biocompatibility of the nitrile functionality. Due to the large amount of antimicrobial
resistance, there is a growing need to elaborate lead structural scaffolds that may be useful
in developing potent antimicrobial drugs. In the light of the benefits resulting from the
antimicrobial activity of these two groups of compounds, it seems logical to search for
new compounds combining the unique molecular identity of phosphonates and nitriles
in their structures. Therefore, the development of new methods for their preparation is of
current concern. Only a few reports have appeared regarding the antimicrobial activity
of β-phosphonomalononitriles and β-phosphononitriles, and these are strictly limited to
chromen and quinoline moieties (Figure 1) [11–13].
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Revising the toxic effect of the novel organic compounds, containing both a phospho-
rus–carbon bond and nitrile function, on bacterial cells can provide suitable antimicrobial
agents against bacterial clinical pathogens [14–17]. A careful analysis of the literature
data showed that there are no data related to the influence of the size and electronic
effects of aryl and heteroaryl groups in the beta position of the β-phosphonomalononitrile
derivatives on their antimicrobial activity (Figure 1). Unfortunately, there are no mild
and environmentally sustainable methods to synthesize these types of compounds. The
goal of the presented studies is the development of the efficient enzymatic preparation of
β-phosphonomalononitrile derivatives with aryl and heteroaryl groups in the β-position
and their validation and comparison with commonly used antimicrobial agents against
model strains of Escherichia coli K12 (with native LPS in its structure) and R2–R4 (LPS of
different lengths in its structure).

The phospha–Michael reaction of phosphite nucleophile to carbon–carbon double
bonds is a widely used method for carbon–phosphorus bond formation [18–20]. The re-
action is usually catalyzed by alkaline earth metal oxides [21], functionalized silica [22],
organic bases [23,24], or iron-doped carbon nanotubes [25]. Many of these two-component
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protocols essentially involve the addition of phosphite nucleophiles to benzylidine malonon-
itrile; however, reports on the multicomponent one-pot synthesis of β-phosphonomalonon-
itriles which eliminate the need for α,β-unsaturated malonates derivatives are highly
limited [26–28]. Unfortunately, many of the reported protocols suffer from some incon-
veniences, such as the stoichiometric amount of catalysts, water free environment, or the
application of expensive and highly toxic catalysts [29,30]. Moreover, some of the avail-
able methods lead to obtaining products contaminated with metals, which significantly
reduces their applicability in the synthesis of biologically active compounds. Thus, it seems
meaningful to find a method to overcome these limitations.

2. Results and Discussion
2.1. Chemistry

Among hydrolases, lipases (EC 3.1.1.3) [31,32] have appeared as a leading class of
biocatalysts in organic synthesis. Generally, lipases are employed to perform three types of
reactions: hydrolysis, esterification, and transesterification [33]. An increasing number of re-
ports on lipase-catalyzed, unconventional reactions have directed attention towards lipase
promiscuity [34–38]. As a continuation of our research on seeking new catalytic activities
for hydrolases [39–43], we focused our efforts to elaborate sustainable metal-free methods
towards desired β-phosphonomalononitriles and β-phosphononitriles (Figures 2 and 3).
Therefore, the possibility of using the biocatalytic approach in the synthesis of target β-
phosphonates should be considered. The use of hydrolases as catalysts in various variants
of the Michael addition of different nucleophilic partners has been widely discussed in
the literature [44–46]. Recently, it was also shown that lipases catalyze aldol and Kno-
evenagel condensations [47]. This observation prompted us to investigate the viability of
β-phosphonomalononitriles synthesis using the Knoevenagel–phospha–Michael addition
of alkyl phosphites to simultaneously generated α,β-unsaturated malonates in the presence
of enzymes as an efficient and sustainable catalyst of both transformations.
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Figure 2. Reusability of Candida cylindracea lipase in 1 synthesis. Reaction conditions: benzaldehyde
(1 mmol), malononitrile (1 mmol), dimethyl phosphite (1 mmol) in TBME (2 mL) for 8 h, 200 rpm.

Regarding the promiscuous activity of lipases [39], the model multi-component
(MCR) Knoevenagel–phospha–Michael reaction of benzaldehyde (1 mmol), malononi-
trile (1 mmol), and dimethyl phosphite (1 mmol) was conducted in tert-butyl methyl ether
(TBME) at 20 ◦C (Scheme 1 and Table 1, entry 1). Selected commercially available lipases—
one domestically prepared wheat germ lipase and five liver acetone powders—were tested
as catalysts, and the results are summarized in Table 1.
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an enzyme-catalyzed phospha–Michael addition. Yields in brackets provided for isolated products 1–14.
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Scheme 1. Enzyme-catalyzed synthesis of β-phosphonomalononitriles 1–10 and β-phosphononitriles
11 and 12.

As shown in Table 1, lipase from Candida cylindracea (CcL) was found as the best
catalyst among the tested lipases for this addition reaction (Table 1, entry 2). The β-
phosphonomalononitrile 1 was obtained in good yield (75%) after 8 h in neat at 20 ◦C. The
yield did not increase noticeably after 8 h. In the absence of enzyme, only traces of target
product 1 was formed (Table 1, entry 1). To confirm the promiscuous activity of CcL in the
studied reaction, bovine serum albumin (BSA) [48] and thermally deactivated CcL were
also applied. The results indicated that application of BSA provided target product 1 with
an 8% yield, while denatured CcL gave only tracers of product 1 (Table 1, entries 25 and
26). Catalytic proficiency in the studied reaction of the BSA can be explained by the basic
character of what the attractive feature of this protein is [49]. These results clearly show
that the peculiar active site of CcL is responsible for the studied multicomponent reaction.
In addition, two different non-enzymatic catalysts reported in the literature as sustainable
promoters of Knoevenagel and Michael additions [50–53], copper (II) acetate and zinc
oxide/palladium (II) acetate, were tested under similar reaction conditions leading to target
product 1, with up to 23% yield (Table 1, entries 27–29). It is well recognized that the reaction
medium has a great impact on enzyme properties [54]. The influence of several organic
solvents on the model reaction was revised (Table 1, entries 2–11), and product formation
was observed in all solvents used. However, the initially selected TBME provided the target
product 1 with the highest yield (Table 1, entry 2), therefore this solvent was applied in
the further optimization. It is worth noting that both water and solvent-free conditions
favor the formation of the target product 1 with 42% and 63% yields, respectively (Table 1,
entries 10 and 11). This fits perfectly with the assumptions of green chemistry related to
the reduction of toxic reagents and solvents [55]. Next, the model reaction was carried
out at elevated temperatures. The reaction yield increased to 83% at 30 ◦C and decreased
above 30 ◦C, which may be due to changes in the quaternary structure of the enzyme used
(Table 1, entries 12 and 13). Further, the yield of target compound 1 increased negligibly
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(85%, Table 1, entry 14) by raising the amount of CcL from 50 mg to 80 mg Thus, 50 mg of
CcL was found as the optimal amount for the further investigations. Unfortunately, the
obtained chiral product remains in agreement with our previous observations for lipase’s
promiscuous activity [39].

Table 1. Model Knoevenagel–phospha–Michael addition to malononitrile catalyzed by enzymes.
[a] Optimization studies.

Entry Catalyst T (◦C) Solvent Yield [%] f

1 None 20 TBME <5
2 Candida cylindracea lipase (CcL) 20 TBME 75
3 Candida cylindracea lipase (CcL) 20 Toluene 52
4 Candida cylindracea lipase (CcL) 20 EtOAc 19
5 Candida cylindracea lipase (CcL) 20 THF 57
6 Candida cylindracea lipase (CcL) 20 2-Me THF 59
7 Candida cylindracea lipase (CcL) 20 1,4-dioxane 49
8 Candida cylindracea lipase (CcL) 20 MeCN 36
9 Candida cylindracea lipase (CcL) MeOH 25

10 Candida cylindracea lipase (CcL) 20 water 42
11 Candida cylindracea lipase (CcL) 20 neat 63
12 Candida cylindracea lipase (CcL) 30 TBME 83
13 Candida cylindracea lipase (CcL) 40 TBME 75
14 Candida cylindracea lipase (CcL) b 30 TBME 85
15 Wheat germ lipase c 20 TBME 19
16 Pseudomonas cepacia lipase (PfL) 20 TBME 14
17 Porcine pancreas lipase (PpL) 20 TBME 31
18 Candida rugosa lipase (CrL) 20 TBME 44
19 Novozym 435 20 TBME 8
20 Bovine liver acetone powder (BLAP) c 20 TBME 15
21 Goose liver acetone powder (GLAP) c 20 TBME 11
22 Chicken liver acetone powder (CLAP) c 20 TBME 16
23 Wild hog liver acetone powder (WGLAP) c 20 TBME 27
24 Deer liver acetone powder (DLAP) c 20 TBME 33
25 Bovine serum albumin (BSA) 30 TBME 8
26 Denatured CcL d 30 TBME 7
27 Cu(OAc)2

e 20 TBME 18
28 ZnO e 20 TBME 23
29 Pd(OAc)2 20 TBME <5

a Reaction conditions: benzaldehyde (1 mmol), malononitrile (1 mmol), dimethyl phosphite (1 mmol), and enzyme
(50 mg) in solvent (2 mL) for 8 h, 200 rpm. b CcL (80 mg), c Domestically prepared. d Thermally deactivated at
100 ◦C for 24 h. e 10 mol%. f Yield of the isolated product 1 after chromatography on silica gel.

The reusability of an enzyme is an important factor that significantly reduces overall
costs of the method. In this work, lipase from Candida cylindracea was reused up to five times
with a gradual decrease in the yield, up to 43% after the fourth cycle and 32% after the
fifth one.

Finally, the elaborated enzymatic protocol enabled for synthesis of series of β-phospho-
nomalononitriles and β-phosphononitriles 2–12 with good to very high yields for aromatic
and aromatic aldehydes (Figure 3). The enzymatic phospha–Michael addition with aliphatic
aldehyde provided product 10 with lower yield of 43% (Figure 3). Similar reductions in
reaction yields were observed for sterically bulky electron rich aldehydes with two methoxy
groups located at the phenyl ring, which resulted in product 4, with a 64% yield. As shown
in Figure 3, the application of ethyl 2-cyanoacetate as the substrate provided products 11
and 12, with yields up to 89% as a mixture of diasteroisomers (ratio: 2:1).

Additional experiments were performed to obtain insights on reaction pathways.
Under developed conditions, benzylidenemalononitrile was used together with dimethyl
H-phosphite in the presence of CcL as a catalyst which resulted in target β-phosphonoma-
lononitriles 1 in a high yield of 88%. This observation is supported by the literature
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reports regarding the Knoevenagel reaction promoted by lipases [42,56] constituting
the initial formation of an α,β-unsaturated intermediate in the presence of CcL (Step 1,
Scheme 2).
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Scheme 2. Plausible mechanism of enzyme-catalyzed according to [42] (Step 1, Scheme 2) reaction to
malononitrile. R1: aryl, alkyl.

To our delight, the developed conditions of the enzymatic addition reaction allowed for
the phospha–Michael addition of two different H-phosphonates to acrylonitrile, which re-
sulted in dibenzyl (2-cyanoethyl)phosphonate (13) and diethyl (2-cyanoethyl)phosphonate
(14), with 43% and 49% yields, respectively (Figure 3). Compound 14 is an intermedi-
ate for the preparation of triose-phosphate isomerase inhibitors [57]. This opens up new
possibilities for the use of lipase promiscuity in the formation of phosphorus–carbon
bonds. The structures of new compounds were confirmed using NMR and mass spec-
troscopy. Spectral data of known compounds remained in agreement with the literature
data. The NMR spectra of compounds 1–14 are presented in the experimental section
(Supplementary Materials Figures S1–S44).

2.2. Cytotoxic Studies of the Library of β-Phosphonate Derivatives 1–14

The toxic effect on bacterial cells after the analysis of the MIC and MBC tests for
all 14 analyzed compounds, for which the MIC values were observed in the range of
0.2–1.4 µg/mL, and 2–82 µg/mL for MBC values in the analyzed model strains K12, R2,
R3 and R4) (Figures 4 and 5), which had specific functional groups in the structure of the
aromatic ring located at the beta position. It is worth noting that the introduction of a halo-
gen atom into the structure of the tested compounds had a significant effect on the activity
of compinds 6 and 7, which is often observed for various types of compounds exhibiting
antibacterial activity [58–60]. Similar enhanced antimicrobial activity was observed for
methyl and methoxy groups located in the aromatic ring of the studied compounds 5 and
12 (Figures 4–6). The pivotal role of methyl groups on antibacterial activity was reported
for some heteroaromatic agents [61,62].
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Figure 4. Minimum inhibitory concentration (MIC) of the β-phosphonate derivatives in model
bacterial strains. The x-axis features compounds 1–14 used sequentially. The y-axis shows the MIC
value in µg/mL−1. Investigated strains of E. coli K12 as control (blue), R2 strains (orange), R3 strain
(grey), and R4 strain (yellow). The y-axis shows the MBC value in µg/mL−1. The order in which the
compounds were applied to the plate are shown in Supplementary Materials Figure S1.
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Figure 5. Minimum bactericidal concentration (MBC) of the β-phosphonate derivatives. The x-
axis features compounds 1–14 used sequentially. The y-axis shows the MIC value in µg/mL−1.
Investigated strains of E. coli K12 as control (blue), R2 strains (orange), R3 strain (grey), and R4 strain
(yellow). The y-axis shows the MBC value in µg/mL−1. The order in which the compounds were
applied to the plate is shown in Supplementary Materials Figure S1.
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Figure 6. The ratio of MBC/MIC of the β-phosphonate derivatives. The x-axis features compounds
1–16 used sequentially. The y-axis shows the MIC value in µg/mL−1. Investigated strains of E. coli
K12 as control (blue), R2 strains (orange), R3 strain (grey), and R4 strain (yellow). The y-axis shows
the MBC value in µg/mL−1. The order in which the compounds were applied to the plate is shown
in Supplementary Materials Figure S1.

The analyzed bacterial strains used in the experiments were used in 48-well plates.
(Figures 4–6 and Table 2).

Table 2. Statistical analysis of all analyzed compounds by MIC, MBC, and MBC/MIC; <0.05 *,
<0.01 **, <0.001 ***.

No. of Samples 5 6 7,12 Type of Test

K12 ** ** ** MIC

R2 ** ** ** MIC

R3 ** ** ** MIC

R4 ** ** ** MIC

K12 ** ** *** MBC

R2 ** ** *** MBC

R3 ** ** *** MBC

R4 ** ** *** MBC

K12 *** *** * MBC/MIC

R2 *** *** * MBC/MIC

R3 *** *** * MBC/MIC

R4 *** *** * MBC/MIC

2.3. Analysis of R2–R4 E. coli Strains Modified with β-Phosphonate Derivatives

The obtained MIC values as well as our previous studies with various types of the
analyzed compounds [63–66] indicate that β-phosphonate derivatives also show a strong
toxic effect on the analyzed bacterial model strains. The three analyzed compounds were
selected for further analysis by modifying E. coli’s DNA. Modified bacterial DNA was
digested with Fpg as described earlier [67–70]. All selected analyzed β-phosphonate
derivatives (Figure 3) with different substituents located at the phenyl ring are responsible
for the change of the topology of bacterial DNA. After digestion with Fpg, approximately
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3.5% of oxidative damage was identified, which very strongly indicates oxidative damage
in bacterial DNA, similar to the previous observations [71–74].

The obtained results indicate that all tested β-phosphono malonates show cytotoxic
activity in all analyzed E. coli strains differing in LPS length. Different inhibitory activ-
ity was found depending on the nature of the R1 and R2 substituents attached to the
phosphorus–carbon bond and nitrile function of the tested compounds. Among all tested
compounds, the compounds from 5–7 and 12 showed a stronger antibacterial effect than
the others. It is worth noting that the introduction of the phosphorus–carbon bond and
nitrile function into the structure of the tested compounds had a significant impact on
their activity and cytotoxicity and high selectivity against selected E. coli model strains in
the MIC and MBC tests, which is often observed in various types of compounds showing
strong microbiological activity on cells [63–66]. These compounds showed higher activity
against strains R2, R3, and R4 than commonly used antibiotics (Figures 4–7). The values
of the MIC and MBC tests for each model of E. coli R2–R4 and K12 strains were visible on
all analyzed growth microplates after the addition of resazurin. The analyzed bacterial
strains used in the experiments were used in 48-well plates which were treated with the
analyzed compounds in the MIC and MBC assays. On the basis of their analysis, color
changes were observed for all tested compounds but at different levels and at different
dilutions. The most sensitive to the effects of the analyzed compounds were the bacterial
strains R3 and R4 due to the increasing length of their LPS (visible dilutions 10−2 corre-
sponding to a concentration of 0.0015 µM) more than strains K12 and R2 (visible dilutions
of 10−6 corresponding to a concentration of 0.0015 µM). Strain R4 was the most sensitive,
possibly due to the longest length of lipopolysaccharide (LPS) in the bacterial membrane.
In all analyzed cases, the MBC test values were approximately 80 times higher than the
MIC test values in eight analyzed compounds, including those in Figures 4–6 and Table 2.
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Figure 7. Percentage of plasmid DNA recognized by Fpg enzyme (y-axis) with model bacterial, K12,
and R2–R4 strains (x-axis). All analyzed compounds numbered were statistically significant at <0.05
(see Table 2).

2.4. R2–R4 E. coli Strains with Tested β-Phosphonate Derivatives

The performed studies prove that the analyzed compounds can potentially be used
as “substitutes” for the currently used antibiotics in hospital and clinical infections
(Figures 7–9 and S3).
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Figure 8. Examples of MIC with model bacterial strains K12, R2, R3, and R4 for studying antibiotics
ciprofloxacin (cipro), bleomycin (bleo), and cloxacillin (clox). The x-axis features antibiotics used
sequentially. The y-axis features the MIC value in µg/mL−1.
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Figure 9. Percentage of bacterial DNA recognized by Fpg enzyme in model bacterial strains after
ciprofloxacin, bleomycin, and cloxacillin treatment. The compounds were statistically significant at
p < 0.05.

Large modifications of plasmid DNA were observed for the analyzed compounds 5, 6,
7 and 12 showing their high superselectivity.

3. Materials and Methods
3.1. Microorganisms and Media

E. coli K-12, R1–R4 strains were received from Prof. Jolanta Łukasiewicz at the Lud-
wik Hirszfeld Institute of Immunology and Experimental Therapy (Polish Academy of
Sciences, Warsaw, Poland). Bacteria were cultivated in a tryptic soy broth (TSB; Sigma-
Aldrich, Saint Louis, MO, USA) liquid medium and on agar plates containing TSB medium.
N,N-Dimethylformamide (DMF) was purchased from Sigma Aldrich (CAS No. 68-12-2,
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Poznań, Poland). Lanes 1kb-ladder and Quick Extend DNA ladder (New England Biolabs,
Ipswich, MA, USA), with MIC and MBC tests, are described in detail in the previous
work [73–76] and analyzed by the Tukey test indicated by (p < 0.05): * p < 0.05, ** p < 0.1,
*** p < 0.01.

3.2. Chemicals

All reagents and the solvents were purchased from Sigma-Aldrich. All solvents were
of analytical grade and were used without prior distillation. All specific strains such as
Pseudomonas fluorescens (PfL) (catalogue number 534730, Lot. number MKBH1198V), Can-
dida rugosa (CrL) (catalogue number 90860, Lot. number BCBH7102V), Candida cylindracea
(CcL) (catalogue number 62316, Lot. number 1336707), and bovine serum albumin were
purchased from Sigma-Aldrich. Immobilized lipase from Candida antarctica B (Novozym
435) (catalogue number LC200223) was purchased from Novo Nordisk. Lipase from porcine
pancreas, Type II (PpL) (catalogue number L-3126, Lot. number 108H1379) was purchased
from Sigma-Aldrich. Goose, chicken, bovine, wild hog and deer livers were converted to
the acetone powder (GLAP) by the method of Connors et al. [77]. Homemade lipase from
wheat germ was prepared according to the literature protocol [78]. Merck silica gel plates
60 F254 were used for TLC (Thin Layer Chromatography) analysis. Crude reaction mix-
tures were purified using column chromatography on Merck silica gel 60/230–400 mesh,
with an appropriate mixture of hexane and ethyl acetate as solvent. Nuclear magnetic reso-
nance spectra (NMR) were performed on Varian apparatus (Varian, Saint Louis, MI, USA)
(400 MHz) and (500 MHz), mass spectrometer was from Waters Company, Milford, USA.
Chemical shifts are expressed in ppm and coupling constant (J) in Hz using TMS as an
internal standard. High-resolution mass spectra were acquired on a Maldi SYNAPT G2-S
HDMS (Waters) apparatus with a QqTOF analyzer. Enzymatic reactions were performed in
a vortex (Heidolph Promax 1020) equipped with incubator (Heidolph Inkubator 1000). To
prove the ability of the established protocol, each reaction was repeated at least three times.

3.3. General Procedure for the Synthesis of β-Phosphonate Derivatives (1–12)

A mixture of an aldehyde (1 mmol), Candida cylindracea lipase (CcL) (50 mg), malonon-
itrile or ethyl cyanoacetate (1 mmol), and dimethyl phosphite (1 mmol) in TBME (2 mL)
was shaken at 200 rpm at 30 ◦C for 8 h. Reaction was terminated by filtering off the catalyst
through the filter funnel with frit. The yields of MCR toward compounds 1–12, catalyzed
by Candida cylindracea lipase (CcL) are provided in Figure 2. Melting points and spectral
data remained in agreement with the literature data for known compounds. The structure
of obtained products was confirmed using NMR and mass spectroscopy.

3.4. General Procedure for the Synthesis of β-Phosphonate Derivatives (13,14)

A mixture of an acrylonitrile (1 mmol), Candida cylindracea lipase (CcL) (50 mg), and
diethyl phosphite or dibenzyl phosphite (1 mmol) in TBME (2 mL) was shaken at 200 rpm
at 30 ◦C for 8 h. Reaction was terminated by filtering off the catalyst through the filter
funnel with frit. The yields of compounds 13 and 14, catalyzed by Candida cylindracea lipase
(CcL), are provided in Figure 2.

The obtained MIC values, as well as our previous studies with various types of the
analysed compounds [63–66], indicate that derivatives of β-phosphonate derivatives also
show a strong toxic effect of the analyzed model strains of bacteria. The three compounds
analyzed were selected for further analysis by modifying their DNA. Modified bacterial
DNA was digested with Fpg as previously described [70,71]. All selected analyzed deriva-
tives of β-phosphonate derivatives, including various types of alkoxy groups, substituents
located at aromatic rings, and the length of the alkyl chain, can strongly change the bacterial
DNA topology. After Fpg digestion, approximately 3.5% of the oxidative damage was
identified, which, similar to previous observations, indicates very strong oxidative damage
in bacterial DNA [61–74]. Different types of alkoxy groups, substituents located on the
aromatic ring and the length of the alkyl chain, may determine the toxicity of the analyzed
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E. coli strains, including, in particular, R4, as evidenced by the obtained MIC, MBC, and
MTT values. The obtained results for individual compounds were statistically significant
at the level of p < 0.05 (Figures 4–9).

Dimethyl (2,2-dicyano-1-phenylethyl)phosphonate (1). Compound 1 was obtained ac-
cording to General Method with 83% yield (219 mg, 0.83 mmol) as white solid with m.p.
126–127 ◦C [Lit. m.p. 126–127 ◦C; [24]; 1H NMR (400 MHz, CDCl3) δ 7.52–7.31 (m, 5H),
4.66–4.50 (m, 1H), 3.78 (d, J = 11.1 Hz, 3H), 3.72–3.60 (m, 1H), 3.51 (d, J = 10.8 Hz, 3H); 13C
NMR (100 MHz, CDCl3) δ 130.28, 130.17, 129.94, 129.89, 129.78, 129.75, 129.55, 129.42, 111.68,
111.56, 111.48, 111.30, 54.95, 54.81, 53.83, 53.68, 45.99, 43.11, 25.70; 31P NMR (162 MHz,
CDCl3) δ 21.8. NMR data were in accordance with those reported in the literature [24].

Dimethyl (2,2-dicyano-1-(4-nitrophenyl)ethyl)phosphonate (2). Compound 2 was ob-
tained according to General Method with 70% yield (216 mg, 0.7 mmol) as light yellow
solid with m.p. 133–135 ◦C; 1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.2 Hz, 2H), 7.70 (d,
J = 6.9 Hz, 2H), 4.72 (dd, J = 9.1, 7.4 Hz, 1H), 3.81 (d, J = 11.2 Hz, 3H), 3.74 (d, J = 11.9 Hz,
1H), 3.65 (d, J = 11.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 148.54, 148.51, 137.48, 137.43,
130.62, 130.56, 124.50, 124.48, 111.07, 110.96, 110.86, 54.75, 54.68, 54.03, 53.96, 52.08, 44.48,
43.05, 25.09; 31P NMR (162 MHz, CDCl3) δ 20.3. HRMS (ESI) m/z calcd for C12H13N3O5P
[M + H] + 310.0587, found 310.0584.

Dimethyl (2,2-dicyano-1-(4-methoxyphenyl)ethyl)phosphonate (3). Compound 3 was
obtained according to General Method with 91% yield (267 mg, 0.91 mmol) as colorless
solid with m.p. 96–97 ◦C [Lit. m.p. 95–96 ◦C; [27]; 1H NMR (400 MHz, CDCl3) δ 7.38 (d,
J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 4.47 (t, J = 8.2 Hz, 1H), 3.81 (s, 3H), 3.68 (d,
J = 11.4 Hz, 3H), 3.59 (dd, J = 8.0 Hz, J = 18.4 Hz, 1H), 3.54 (d, J = 10.8 Hz, 3H); 13C NMR
(100 MHz, CDCl3) δ 160.5, 130.5, 121.4, 114.9, 111.2 (d, J = 9.8 Hz), 111.0 (d, J = 12.7 Hz),
55.2, 54.6 (d, J = 6.9 Hz), 53.4 (d, J = 7.3Hz), 43.8 (d, J = 145.4 Hz), 25.7; 31P NMR (162 MHz,
CDCl3) δ 22.10. NMR data were in accordance with those reported in the literature [27].

Dimethyl (2,2-dicyano-1-(2,4-dimethoxyphenyl)ethyl)phosphonate (4). Compound 4 was
obtained according to General Method with 64% yield (207 mg, 0.64 mmol) as colorless
solid with m.p. 114–116 ◦C; 1H NMR (500 MHz, CDCl3) δ 7.47 (dd, J = 8.6, 2.0 Hz, 1H),
6.56–6.46 (m, 2H), 4.49 (dd, J = 10.0, 8.3 Hz, 1H), 4.28 (dd, J = 21.5, 8.4 Hz, 1H), 3.84 (s, 3H),
3.80 (s, 3H), 3.79 (d, J = 10.8 Hz, 3H), 3.58 (d, J = 10.8 Hz, 3H); 13C NMR (100 MHz, CDCl3)
δ 160.5, 130.5, 111.2 (d, J = 9.8 Hz), 110.0 (d, J = 12.7 Hz), 105.0 (d, J = 10.5 Hz), 99.1 (d,
J = 10.5 Hz), 55.9, 55.4, 54.2 (d, J = 6.9 Hz), 53.2 (d, J = 7.3Hz), 36.6, 35.4, 25.0; 31P NMR
(202 MHz, CDCl3) δ 23.1. HRMS (ESI) m/z calcd for C14H18N2O5P [M + H] + 325.0947,
found 325.0943.

Dimethyl (2,2-dicyano-1-(4-methylphenyl)ethyl)phosphonate (5). Compound 5 was ob-
tained according to General Method with 93% yield (254 mg, 0.93 mmol) as colorless solid
with m.p. = 109–110 ◦C [Lit. m.p. 108–110 ◦C; [27]; 1H NMR (400 MHz, CDCl3) δ 7.33 (d,
J = 2.0 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 4.57–4.50 (m, 1H), 3.78 (d, J = 11.1 Hz, 3H), 3.61 (dd,
J = 21.3, 8.0 Hz, 1H), 3.53 (d, J = 10.8 Hz, 3H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ 139.7, 130.2, 129.0, 126.6, 111.1 (d, J = 9.6 Hz), 110.9 (d, J = 6.2 Hz), 54.6 (d, J = 6.8 Hz),
53.4 (d, J = 7.3 Hz), 44.2 (d, J = 144.6 Hz), 25.5, 21.1; 31P NMR (162 MHz, CDCl3) δ 22.0.
NMR data were in accordance with those reported in the literature [28].

Dimethyl (2,2-dicyano-1-(4-fluorophenyl)ethyl)phosphonate (6). Compound 6 was ob-
tained according to General Method with 85% yield (240 mg, 0.85 mmol) as colorless solid
with m.p. = 97–98 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.53–7.44 (m, 2H), 7.19–7.08 (m, 2H),
4.54–4.43 (m, 1H), 3.81 (d, J = 11.1 Hz, 3H), 3.64-3.63 (m, 1H), 3.60 (d, J = 10.8 Hz, 3H); 13C
NMR (100 MHz, CDCl3) δ 131.23, 116.81, 116.61, 111.01, 110.93, 54.60, 53.63, 53.55, 44.45,
43.00, 25.63; 31P NMR (162 MHz, CDCl3) δ 21.5. HRMS (ESI) m/z calcd for C13H15FN2O4P
[M + H] + 313.0747, found 313.0746.

Dimethyl (2,2-dicyano-1-(4-chlorophenyl)ethyl)phosphonate (7). Compound 7 was ob-
tained according to General Method with 76% yield (226 mg, 0.76 mmol) as colorless
solid with m.p. 117–118 ◦C [Lit. m.p. 118 ◦C; [22]; 1H NMR (400 MHz, CDCl3) δ 7.42 (d,
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J = 1.2 Hz, 4H), 4.54 (dd, J = 9.0, 7.6 Hz, 1H), 3.80 (d, J = 11.1 Hz, 3H), 3.66 (d, J = 7.6 Hz,
1H), 3.60 (d, J = 10.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 135.99, 135.96, 130.69, 129.81,
129.79, 128.57, 111.15, 111.04, 110.99, 110.87, 54.70, 54.63, 53.69, 53.62, 44.51, 43.07, 25.43; 31P
NMR (162 MHz, CDCl3) δ 21.2. NMR data were in accordance with those reported in the
literature [22].

Dimethyl (2,2-dicyano-1-(furan-2-yl)ethyl)phosphonate (8). Compound 8 was obtained
according to General Method with 86% yield (218 mg, 0. 86 mmol) as colorless solid with
m.p. 44–45 ◦C [Lit. m.p. 42 ◦C; [66]; 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 0.8 Hz, 1H),
6.62 (s, 1H), 6.52–6.42 (m, 1H), 4.56–4.46 (m, 1H), 3.98–3.86 (m, 1H), 3.81 (s, 3H), 3.74 (d,
J = 10.9 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 144.2, 111.9, 111.4, 111.3, 110.5, 54.4 (d,
J = 7.1 Hz), 54.0 (d, J = 6.9 Hz), 38.9 (d, J = 147.3 Hz), 24.2; 31P NMR (162 MHz, CDCl3) δ
18.7. NMR data were in accordance with those reported in the literature [27,79].

Dimethyl (2,2-dicyano-1-(thiophen-2-yl)ethyl)phosphonate (9). Compound 9 was obtained
according to General Method with 69% yield (186 mg, 0.69 mmol) as colorless solid with
m.p. 52–53 ◦C; 1H NMR (400 MHz, CDCl3) δ 7.52–7.32 (m, 2H), 7.07 (d, J = 3.6 Hz, 1H),
4.68–4.50 (m, 1H), 3.99 (dd, J = 22.2, 6.5 Hz, 1H), 3.80 (d, J = 11.1 Hz, 3H), 3.68 (d, J = 11.2 Hz,
3H); 13C NMR (100 MHz, CDCl3) δ 129.65, 129.57, 127.82, 127.80, 127.63, 127.60, 110.84, 54.70,
53.84, 40.48, 39.00, 36.28, 26.64; 31P NMR (162 MHz, CDCl3) δ 19.9; HRMS (ESI) m/z calcd for
C10H12N2O3PS [M + H] + 271.0301, found 271.0300.

Dimethyl (2,2-dicyano-1-monooctyl)phosphonate (10). Compound 10 was obtained accord-
ing to General Method with 43% yield (129 mg, 0.43 mmol) as colorless semi-solid with 1H
NMR (400 MHz, CDCl3) δ 4.30 (dd, J = 13.1, 3.6 Hz, 1H), 3.86 (d, J = 5.0 Hz, 3H), 3.83 (d,
J = 5.1 Hz, 3H), 2.39 (dtd, J = 20.0, 7.1, 3.6 Hz, 1H), 2.02–1.77 (m, 2H), 1.55 (p, J = 7.9, 7.4 Hz,
2H), 1.34–1.26 (m, 10H), 0.87 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 53.57, 49.97,
45.67, 37.16, 31.73, 29.21, 29.07, 27.17, 23.67, 22.59, 14.03; 31P NMR (162 MHz, CDCl3) δ 26.0;
HRMS (ESI) m/z calcd for C14H26N2O3P [M + H] + 301.1675, found 301.1673.

2-Cyano-3-(dimethoxy-phosphoryl)-3-phenyl-propionic acid ethyl ester (11). Compound
11 was obtained according to General Method with 86% yield (268 mg, 0.86 mmol) as colorless
semi-solid as a mixture of diastereoismers (ratio 1:2); 1H NMR (400 MHz, CHCl3) δ 7.48 (dt,
J = 7.6, 1.9 Hz, 2H), 7.41–7.30 (m, 6H), 4.26 (dd, J = 8.7, 6.4 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H),
4.10–4.02 (m, 2H), 3.90–3.80 (m, 1H), 3.79 (d, J = 10.9 Hz, 2H), 3.69 (d, J = 11.0 Hz, 3H),
3.66 (d, J = 10.7 Hz, 3H), 3.48 (d, J = 10.7 Hz, 2H), 1.18 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.1 Hz,
2H); 13C NMR (100 MHz, CDCl3) δ 164.18, 164.08, 129.24, 128.97, 128.95, 128.83, 128.80,
114.76, 114.66, 63.34, 63.14, 54.15, 54.13, 54.08, 54.06, 53.37, 44.92, 44.15, 43.49, 42.71, 39.38,
39.15, 13.79, 13.63; 31P NMR (162 MHz, CDCl3) δ 24.45, 24.33; HRMS (ESI) m/z calcd for
C14H19NO5P [M + H] + 312.0995, found 312.0992.

2-Cyano-3-(dimethoxy-phosphoryl)-3-(4-methoxyphenyl)-propionic acid ethyl ester (12).
Compound 12 was obtained according to General Method with 89% yield (303 mg, 0.89 mmol)
as colorless semi-solid as a mixture of diastereoismers (ratio 1:2); 1H NMR (400 MHz, CDCl3)
δ 7.36–7.31 (m, 2H), 7.26–7.21 (m, 1H), 6.80 (ddd, J = 8.6, 7.8, 0.7 Hz, 3H), 4.17 (dd, J = 8.6,
6.2 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 4.03–3.94 (m, 1H), 3.77 (d, J = 6.2 Hz, 1H), 3.72 (s, 1H),
3.70 (s, 3H), 3.69 (d, J = 1.2 Hz, 3H), 3.61 (s, 3H), 3.58 (d, J = 10.7 Hz, 3H), 3.42 (d, J = 10.7 Hz,
1H), major steroisomer 1.12 (t, J = 7.1 Hz, 3H), minor stereoisomer 1.02 (t, J = 7.1 Hz, 1H); 13C
NMR (100 MHz, CDCl3) δ 164.22, 163.98, 130.93, 130.87, 130.47, 130.41, 123.49, 123.43, 122.80,
122.74, 114.81, 114.72, 114.32, 114.30, 114.29, 63.24, 63.04, 54.07, 54.06, 54.00, 53.99, 53.27, 53.20,
43.95, 43.18, 42.51, 41.74, 39.55, 39.29, 39.27, 13.76; 31P NMR (162 MHz, CDCl3) δ 24.7, 24.6;
HRMS (ESI) m/z calcd for C15H21NO6P [M + H] + 342.1101, found 342.1098.

Dibenzyl (2-cyanoethyl)phosphonate (13). Compound 13 was obtained according to Gen-
eral Method with 43% yield (135 mg, 0.43 mmol) as colorless oil; 1H NMR (400 MHz, CDCl3)
δ 7.44–7.29 (m, 10H), 5.12–4.92 (m, 4H), 2.55–2.41 (m, 2H), 2.10–1.95 (m, 2H); 13C NMR
(100 MHz, CDCl3) δ 135.70 (d, J = 5.7 Hz), 128.81 (d, J = 6.7 Hz), 128.21, 118.25 (d, J = 19.1 Hz),
67.95 (d, J = 6.6 Hz), 23.38 (d, J = 144.0 Hz), 11.42 (d, J = 2.8 Hz); 31P NMR (162 MHz, CDCl3)
δ 27.0. NMR data were in accordance with those reported in the literature [79].
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Diethyl (2-cyanoethyl)phosphonate (14). Compound 14 was obtained according to General
Method with 49% yield (94 mg, 0.49 mmol) as colorless oil; 1H NMR (400 MHz, CDCl3) δ
4.08 (dqd, J = 8.1, 7.1, 4.3 Hz, 4H), 2.64–2.52 (m, 2H), 2.07–1.96 (m, 2H), 1.32–1.23 (m, 6H);
13C NMR (100 MHz, CDCl3) δ 118.37 (d, J = 18.1 Hz), 62.34 (d, J = 6.7 Hz), 30.81, 22.77 (d,
J = 144.8 Hz), 16.41 (d, J = 5.7 Hz), 11.59 (d, J = 3.8 Hz); 31P NMR (162 MHz, CDCl3) δ 25.9.
NMR data were in accordance with those reported in the literature [79].

Benzylidenemalononitrile. 1H NMR (400 MHz, CDCl3) δ 7.96–7.85 (m, 2H), 7.78 (s, 1H),
7.68–7.58 (m, 1H), 7.52 (dd, J = 8.5, 7.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 160.16,
134.67, 130.99, 130.76, 129.65, 113.83, 112.69, 82.68. NMR data were in accordance with
those reported in the literature [80].

4. Conclusions

Our research focused on the development of a method for the synthesis of β-phosponate
derivatives that would not require the use of cytotoxic and genotoxic reagents. The use of
enzymes as catalysts for the reactions to obtain target compounds has been proposed. As
a result of the research, it was found that the best biocatalysts are lipases, and among them,
lipase from Candida cylindracea. New promiscuous activity of lipases in phosphorus–carbon
bond formation leading to β-phosphonomalononitriles was presented. Our elaborated
protocol provides an efficient, mild, and metal-free synthesis of the target products with
a high yield (43–93%). Among the studied derivatives, the compounds 5, 6, 7, and 12 were
obtained with the highest yields, which possess halogen atoms or methyl and methoxy
groups in aromatic substituent located at beta-position and turned out to be the antimi-
crobial agents with activity profiles similar to commonly used antibiotics: ciprofloxacin,
bleomycin, and cloxacillin (Figures 4 and 9). The results of the presented research are
important for understanding the biological properties of the tested β-phosphononitrile
derivatives as a function of potential new antibiotics and their toxic effects on Gram-
negative bacteria in the face of growing drug-resistance. Our studies also show that the
synthesized β-phosphonomalononitriles have lower MIC values compared to well-known
antibiotics, which allows us to say that DKPs hold more potential as antibiotic drug candi-
dates due to high anti-bacterial activity for all the tested mutants. The observed results are
especially important in the case of the increasing resistance of bacteria to various drugs and
antibiotics. Moreover, the obtained compounds constitute a practical platform for further
chemical modifications that may favorably translate into their pharmacological as well as
pharmacokinetic properties for the development of antibiotics. Additionally, due to the
low acquisition costs, they can be an attractive alternative to the currently used antibiotics.
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