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ABSTRACT: Despite the broad interest in organic compounds
possessing a γ-aminocarbonyl motif, limited strategies for their
synthesis have been reported. Herein, we describe a mild and
efficient method for the site-selective amidation of unsaturated
enones with electrophilic N-centered radicals as a key intermediate.
The photocatalytic vinylogous reaction of dienolates with N-amino
pyridinium salts affords γ-amido carbonyl compounds. This process
is high-yielding, scalable, and tolerates a broad range of unsaturated
α,β-unsaturated carbonyls, including biologically relevant compounds, as starting materials.

The concept of vinylogy, established by Fuson in 1935,1

postulates that the influence of a functional group can be
propagated through a conjugated system of unsaturated bonds.
This phenomenon is particularly important for the functional-
ization of α,β-unsaturated carbonyl compounds, which are
versatile starting materials in organic synthesis.2−15 Typically, in
vinylogous reactions, π-extended carbonyl derivatives of type I
are transformed into dienolates II that contain two nucleophilic
sites (Scheme 1). Consequently, the addition of electrophiles
can occur at either α-position (III) or more remote γ-position

(IV).1,7 The regio- and stereoselectivity of these transformations
are affected by multiple factors, such as the presence of bulky
substituents, a catalyst (if any), or the electron density at the
nucleophilic carbon sites, and remain one of the most
challenging issues that have to be addressed.1−3,7−13

In recent years, in addition to the established use of preformed
silyl enol ethers, novel activation strategies have been developed
for vinylogous transformations.19−25 These include iminium/
enamine organocatalysis,19,20,22,26−28 NHC organocataly-
sis,23,24,26 cooperative organo/metal catalysis,10,25 and photo-
catalysis.29,30 Because the application of vinylogy creates an
additional reaction site in enolizable π-extended carbonyl
systems, it has been widely utilized in the synthesis of distantly
substituted carbonyl derivatives.8,15,31−33 Among them, γ-
amination occupies a particular position as γ-aminocarbonyl
motifs are quite ubiquitous in natural compounds, γ-amino-
butyric acid (GABA), and bioactive molecules (Scheme
1).16,34,35 Currently, the known methods for vinylogous
amination mainly utilize tetraazodicarboxylates as a nitrogen
source and are often limited in scope. Jørgensen et al. first
introduced an organocatalytic approach for the enantioselective
γ-amination of dienamines via [4+2] cycloaddition to
azodicarboxylates.19 Alternatively, dienolates were found to
react site-selectively with the same electrophile in the presence
of a base.16

Significant advances have been made in the field of
photoredox catalysis, and a great deal of effort has been spent
on expanding the utility of radicals in organic synthesis.36−41 In
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Scheme 1. Concept of Vinylogy and Bioactive Molecules
Containing a γ-Amino Group16−18
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vinylogous transformations, substrates that bear a leaving group
at the functionalized position have been mainly utilized.29,30

However, despite the broad application of nitrogen-centered
radicals in synthetic chemistry,42−46 their reactivity in vinyl-
ogous reactions has rarely been explored.44,46−49 We have
recently reported that electrophilic nitrogen-centered radicals
generated from N-aminopyridinium salts are trapped by enol
equivalents to give α-amido carbonyl compounds in excellent
yields.50 On the basis of the vinylogy principle, we hypothesized
that photocatalytic amidation at the γ-position of the enone
system with electrophilic amidyl radicals should also be feasible.
Herein, we present the first example of a photocatalytic,

vinylogous amidation of extended enolate derivatives. Under
visible-light irradiation, silyl dienol ethers react with pyridinium
salts in a highly selective manner via a radical mechanism. Our
novel procedure opens doors for the site-selective synthesis of
various γ-amido-α,β-unsaturated carbonyl compounds.
We initiated our studies by exploring the reactivity of α,β-

unsaturated carbonyl compounds under previously developed
conditions for the α-amidation.50 The model reaction of silyl
dienol ether 1a with N-aminopyridinium salt 2a in the presence
of the fac-Ir(ppy)3 catalyst, under blue-light irradiation, site-
selectively gave the desired γ-amidated product 3a in 65% yield
as the only product (Table 1, entry 1). Background experiments

confirmed that the desired transformation cannot take place
without the Ir photocatalyst and a light source (entries 2−4).
Subsequently, several reaction parameters [catalyst loading,
substrate ratio, duration, and the power of the light (for details,
see the Supporting Information)] were optimized. The yield
substantially increased when the salt was used in a slight excess
(1.3 equiv, entry 6); moreover, the reaction time was decreased
to 1 h.
Gratifyingly, decreasing the catalyst loading to 0.75 mol % did

not decrease the yield. Overall, irradiation of a solution of 1a
with 2a (1:1.3 molar ratio) and fac-Ir(ppy)3 (0.75 mol %) with
blue LEDs at room temperature for 1 h gives the E-isomer as sole
product 3a in 90% yield.
With the optimized conditions in hand, we examined a set of

N-aminopyridinium salts and various α,β-unsaturated com-
pounds. Silyl dienol ether 1a tolerates both N-mono- and N,N-
disubstituted N-aminopyridinium salts 2, giving the desired

products in good to high yields [3a−3f (Table 2)]. AmongN,N-
disubstituted derivatives 2a−2d, similarly to α-amidation

reactions,50 the most efficient salt 2a with N-Me, N-Ts
functionality gives the desired product in 90% yield in a site-
selective manner, and only the E-alkene forms (entry 1). The
stereoselectivity of the reaction is, however, affected by the
substituents at the amidyl radical. For salts 2b and 2d (entries 1
and 4, respectively) with a bulky Boc protecting group, high
yields are observed, but a mixture of diastereoisomeric E/Z
dienes (∼6:5 E:Z) was isolated (entries 2 and 4). With Cbz salt
2c, the reaction is again fully site- and stereoselective (entries 3
and 5).
Various vinylogous substrates are well tolerated (Scheme 2).

Aryl-substituted enones with various functional groups with
both electron-withdrawing (CN, NO2, COMe, and halides) and
electron-donating (tert-butyl and OMe) groups at the para and
meta positions give products 4−11 in good to excellent yields
(60−90%). Principally, the use of silyl enol ether derivatives
preferentially generates the γ-product over the α-product due to
higher orbital coefficients and higher electrophilic suscepti-
bility.51 Furthermore, diphenylbuta-1,3-diene acetate and
benzoate exclusively furnish γ-amidated products 12a and
12b, respectively, in a similar high yield. Interestingly, in the 1,4-
diaryl α,β-unsaturated carbonyl compound series, the α,γ-
siteselectivity of the amidation is strongly influenced by the
electronic character of the phenyl ring present at the terminal
double bond, while the nature of the chalcone phenyl
substituent does not have an impact on the process. In
particular, having the electron-donating methoxy group at the
para (13a), meta (13b), or ortho (13c) position on both phenyl
substituents does not alter the reaction outcome, and the desired
γ-amidated products form site-selectively. Similarly, substrates
with both electron-donating and electron-withdrawing sub-
stituents on the aryl rings give only the γ-product provided the
methoxy group is in the R2 position (13d). On the contrary,
compounds bearing a phenyl substituent with electron-with-

Table 1. Optimization of the Reaction Conditionsa

entry catalyst catalyst loading (mol %) light yield (%)b

1c fac-Ir(ppy)3 1.0 blue 65
2 none none blue trace
3 fac-Ir(ppy)3 1.0 none trace
4 none none none 0
5 fac-Ir(ppy)3 1.0 blue 84
6d fac-Ir(ppy)3 1.0 blue 90

aReaction conditions: enol 1a (0.25 mmol), salt 2a (1.2 equiv), dry
MeCN (c = 0.05 M), ambient temperature (20−22 °C), 1 h, under an
Ar atmosphere, LED light source (446 nm, 6 W). TBDMS = tert-
butyldimethylsilyl. bIsolated yield. cReaction mixture irradiated for 16
h. dSalt 2a (1.3 equiv).

Table 2. Scope of N-Aminopyridinium Saltsa

entry salt E:Z product yield (%)

1 2a E 3a 90
2 2b 6:5 3b 76
3 2c E 3c 46
4 2d 6:5 3d 74
5 2e E 3e 48
6 2f E 3f 74

aReaction conditions: enol 1a (0.25 mmol), salt 2a−2f (1.3 equiv),
dry MeCN (c = 0.05 M), ambient temperature (20−22 °C), 1 h,
under an Ar atmosphere, LED light source (446 nm, 6 W). Times: 1 h
for 2a, 2b, 2d, and 2f; 2 h for 2c; and 16 h for 2e.
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drawing substituents (-CN or -CF3) at the para position
undergo selective α-amidation using either acetyl- or TBDMS-
protected dienol ether derivatives, giving product 14a or 14b,
respectively, as single Z-diastereoisomers in moderate yields.
However, when the nucleophilicity of the carbonyl group
decreases, the diastereoselectivity of the α-amidation decreases.
Product 14c forms as a mixture of Z/E diastereoisomers (12:1).
Furthermore, enols derived from cyclic ketones afford

products 15−17 in good yields. Although, in general, the steric
hindrance should affect product generation, here this is not the
case. For a sterically hindered cyclohexenone derivative, the
yield increases in comparison to that of the parent cyclo-
hexenone presumably due to the electron-donating effect

imposed by the methyl groups present at the reactive sites
(16). Increasing the ring size effectively increases the yield. The
γ-amidation of aliphatic enones is less effective (18, 26%).
Our methodology can be employed for functionalizations of

enones with elongated systems of double bonds. Both substrates
are compatible with the reaction conditions, although yields for
ε and η functionalizations (19 and 20, respectively) are lower,
due to the lower electron density at these positions.
Furthermore, lactones and aldehydes are also suitable starting
materials; the latter ones prove, however, to be challenging, with
products 22 and 23 forming in lower yields. On the contrary,
ester derivatives proved challenging, due to the hydrolysis of the
starting dienolate (for details, see the Supporting Information).

Scheme 2. Scope of the amidation of α,β-Unsaturated Carbonyl Compoundsa

aReaction conditions: enol 1a (0.25 mmol), salt 2a (1.3 equiv), dry MeCN (c = 0.05 M), ambient temperature (20−22 °C), 1 h, under an Ar
atmosphere, LED light source (446 nm, 6 W). Unless otherwise noted, X = TBDMS. bReaction performed on a 1 mmol scale.
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The utility and effectiveness of the developed method in late-
stage functionalization are demonstrated on biologically active
compounds such as (+)-nootkatone (24), testosterone (25),
citral (26), and β-citral (27). In contrast to simple aldehyde
dienolates, citral and β-cyclocitral provide products in
satisfactory yields, highlighting the robustness of the method-
ology. We emphasize that in all these cases only the γ-amidated
product is obtained, although a mixture of E/Z dienolate silyl
ethers was used as the starting material.
With regard to the mechanism, the addition of TEMPO stops

the reaction, thus confirming the radical nature of the reaction.
Employing DMPO as a spin trap for N-centered radicals leads to
the trapping product as HR-MS confirms (see Figure S3). These
results clearly indicate that the developed reaction is radical in
nature. Data from the literature,50,52 along with the results of
control experiments, allow us to propose a plausible light-
induced radical reaction pathway for the γ-amidation that is
similar to that reported for α-amidation (Scheme 3). The

reduction of N-aminopyridinium salt 2a (E1/2 = −0.70 V vs Ag/
AgCl) by Ir(III) in the excited state generates radical A via
single-electron transfer (SET). Thus, the formed species, A,
undergoes fragmentation to afford N-centered radical B and
pyridine as a byproduct. The addition of N-centered radical B to
dienolate 1a generates allylic radical C, which is oxidized by the
Ir(IV) catalyst to allylic cation D with the regeneration of the
ground state of the Ir(III) catalyst. Removal of the acyl or silyl
group affords γ-product 3a.
In conclusion, on the basis of the vinylogy principle, we have

developed a method for the site-selective amidation of α,β-
unsaturated enones with N-protected aminopyridinium salts
giving access to γ-amidocarbonyl compounds. The reaction of
N-centered radical, generated via Ir photocatalysis, with a
dienolate intermediate is the key step in this transformation. The
advantages of this approach include mild reaction conditions,
high site- and stereoselectivity and substrate tolerance, a simple
setup, and scalability. In addition, it is suitable for functionaliza-
tions of biologically active derivatives.
We believe that the vinylogy strategy may find applications in

the design of other radical transformations of α,β-unsaturated
compounds.
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