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Chapter

Model of an Artificial Blastula for
Assessing Development Toxicity
František Muzika and Jerzy Górecki

Abstract

We are concerned with computer simulations of a ring of 20 coupled CSTRs with
glycolytic oscillatory reaction. Each CSTR represents an artificial cell, and the ring can
be regarded as an artificial blastula. The cells are coupled to two adjacent CSTRs via
the mass exchange of reagents. The glycolytic oscillatory reaction is simulated using
the two-variable core model. Our work is focused on the classification of stationary
discrete nonuniform concentration patterns (discrete Turing patterns). The control
parameters in simulations are autocatalytic and inhibition rate coefficients, as well as
the transport rate coefficients. We performed the analysis of stability and bifurcations
of stationary states to identify the stationary states. The inflow of reagents into each
CSTR was used to initiate a particular pattern. We propose a method to assess the
morphogenetic toxicity of any chemical from a database by switching between pat-
terns or between patterns and oscillations. Moreover, we investigated nonuniform
patterns that create discrete concentration waves inside the ring of 20 coupled cells,
which can trigger gastrulation.

Keywords: discrete turing patterns, glycolysis, 2D artificial blastula,
cheminformatics, morphogenesis toxicity

1. Introduction

Chemoinformatics tools allow us to define information and parameters of various
chemicals influencing more complex systems. The information and parameters are
focused on chemical structure, experimental and physicochemical data, and toxicity.
The toxicity data can concern living tissues, metabolic pathways [1], DNA [2, 3],
RNA, [4, 5], gut microbia [6], or mitochondrial toxicity [7]. Chemoinformatics is also
essential for the development of new drugs [8–11] and for the assessment of their
toxicity [12]. Since the databases of chemicals are extensive and count in millions of
elements, the approach of using artificial intelligence [13], artificial neural networks
[14], and machine learning seems to be the only method to deal with such a huge
amount of collected information [15].

In this paper, we are concerned with the toxicity of chemicals causing morphoge-
netic malfunctions. The malfunctions can be seen as deformed organs, excessive or
missing limbs, and fingers. The toxic factors can also terminate morphogenesis, caus-
ing the death of living organisms. On the other hand, the identification of toxic factors
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can be useful for slowing down the growth of cancer cell clusters. As an alternative to
experiments with actual living cells, we created the 2D model of an artificial blastula,
which mimics a multicellular living organism in its developmental stage (blastula).
Within our model, toxicity and morphogenic malfunctions can be recorded as the
formation and destruction of discrete nonuniform patterns and switching between
them. These patterns were first introduced by A. Turing in his pioneering study [16].
They are partially responsible for yeast budding [17] and are expected to play a key
role during fetal development and gastrulation [18], limb development [19], and
fingers development [20]. While the stationary Turing pattern can occur under con-
ditions of faster transport rate of inhibitor species, usually under the scheme “short-
range activation and long-range inhibition” [21, 22], they can also occur for equal
transport rates of both activator and inhibitor, provided that the overall kinetics is
enhanced, and the system is properly perturbed [23–26]. Turing patterns have been
proven experimentally [27–32], but for its occurrence, the activator molecule trans-
port rate has to be slowed down by different agents. The occurrence of discrete Turing
patterns has been shown experimentally and in models in various artificial systems
using the Belousov-Zhabotinsky reaction and its modifications [33–38].

Our recent research shows it is possible to make transitions between uniform
oscillations and discrete nonuniform patterns [39]. This can be used for chemical
computing as well as a type of chemical memory. Moreover, nonuniform patterns can
also be used as the output of chemical classification. The network considered in this
paper can be used as a classifier under different kinetic and transport parameters and
under different network topology. The reaction parameters and coupling constants
have to be optimized for each topology. Evolutionary algorithms are frequently used
for parameter optimization. Once optimized, even a small network can classify
schizophrenia [40] or color of points on the Japanese flag [41] with accuracy exceed-
ing 90%.

In this chapter, we would like to show how the 2D blastula model can exhibit
various discrete nonuniform patterns and how these patterns can be quenched by
varying kinetic parameters, transport parameters, and the inflow of the substrate.

2. Methods

2.1 Theoretical setup

To model a small multicellular organism of unspecialized cells having only one
layer of cells, a blastula, we chose a ring of N = 20 equivalent cells representing the
cross section of a blastula. This theoretical setup, see Figure 1, follows the morpho-
genesis work of A. Turing [16]. The only difference in our case is that both activator
and inhibitor are transported at the same rate, as proposed in work by Vastano et al.
[23, 24]. Under such circumstances, both nonuniform patterns and uniform oscilla-
tions exist simultaneously. If initially, all cells are in the same state, uniform, fully
synchronized oscillations appear. In order to obtain a nonuniform stationary pattern,
the initial state should be nonhomogeneous. Alternatively, a nonuniform stationary
pattern can be obtained by a nonhomogeneous perturbation of synchronized oscilla-
tions. This is schematically shown in Figure 1, where in Figure 1a) the 2D blastula
model operates in a regime of uniform oscillations, and it acts as 20 synchronized cells.
After it is perturbed, it goes into a regime of a discrete nonuniform pattern (discrete
Turing pattern) (see Figure 1b). Afterward, it can be switched into other discrete
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nonuniform patterns (see Results) by an additional perturbation, or it can be switched
back to uniform oscillations, as shown in Figure 1c.

2.2 Model of glycolysis

Our 2D blastula model consists of 20 coupled cells in which chemical reactions
occur. A separated cell can be modeled using the kinetic equation:

dZ

dt
¼ F Z,Pð Þ, (1)

where vector Z = (x1,… ,xm) represents concentrations of reagents involved and
vector P = (p1,… ,pl) represents the values of l parameters that influence the reaction
rates. The vector function F(Z,P) = (F1(Z,P),… ,Fm(Z,P)) represents the reaction
rates. For N coupled cells in a ring geometry communicating via diffusive transport,
the system of evolution equations is

dZ

dt

� �

i

¼ Q i Zi,Pð Þ ¼ F Zi,Pð Þ þ diag Kdð Þ Ziþ1 � 2Zi þ Zi�1ð Þ, i ¼ 1, … ,N, (2)

and the boundary condition is Zi = Zi + N. Vector Kd = (k1,… ,km) represents a
vector of the transport rate coefficient for each species.

In the case considered in our study, all species have the same transport rate
coefficient in between all cells, and thus kd = k1 = k2 = … = km. To describe reaction
kinetics, we apply the core model of glycolysis [42] on Eq. (2), yielding to equations:

F xi, yi,P
� �

¼ νi tð Þ þ σinh
yni

Mn þ yni
� σM

xi 1þ xið Þ 1þ yi
� �2

Lþ 1þ xið Þ2 1þ yi
� �2

F yi, yi,P
� �

¼ ϕσM
xi 1þ xið Þ 1þ yi

� �2

Lþ 1þ xið Þ2 1þ yi
� �2 � kSyi � ϕσinh

yni
Mn þ yni

(3)

i = 1,..N,
where xi and yi represent ATP and ADP concentration in the i-th cell, respectively.

The function νi(t) describes the ATP inflow rate, ϕ if the ratio of dissociation

Figure 1.
The array of N = 20 coupled cells taken as a 2D blastula model: a) regime of uniform oscillations, b) regime of
discrete nonuniform patterns, and c) regime of uniform oscillations again. Black arrows represent the reagent
exchange between cells. Each cell is numbered. Blue arrows represent perturbation leading to a transition to discrete
nonuniform pattern from uniform oscillations and vice versa. The applied perturbation is shown in Figure 3.
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constants of ATP to ADP, n is Hill coefficient, L is allosteric constant, ks is coefficient
of degradation of ADP, M is Michaelis constant, σM is autocatalytic rate coefficient,
and finally σinh is inhibition rate coefficient. In simulations, we used the values of
parameters proposed by Moran and Goldbeter [42] n = 4, L = 106, ks = 0.06 s�1, ϕ = 1.
The values of other parameters determining reaction kinetics, σinh, kd, and νi(t), were
modified in our simulations. The value of σM = 100 s�1 was used in all simulations.

2.3 Varying parameters to set up the 2D blastula model

Our 2D blastula model has to have carefully chosen parameters, so it can exhibit
the coexistence of discrete patterns and nonuniform oscillations. The core model of
glycolysis for one cell shows uniform oscillations, stable uniform stationary state,
birhythmicity, and hard excitation [42] under fixed autocatalytic rate coefficient
σM = 10s�1, varied inhibition rate coefficient σinh ∈ [0 s�1, 4 s�1], and varied ATP
inflow rate ν ∈ [0 s�1, 2 s�1]. Since we created a model of arrays of coupled cells with
the core model of glycolysis, we had to add transport in between cells originally
described by kATP as the transport rate coefficient for ATP and kADP as the transport
rate coefficient of ADP. Further studies showed if we increase σM > 80s�1, we can
have an equal transport rate coefficient kd for both ATP and ADP. The increment of
σM and σinh can be realized experimentally by increasing temperature [43], increasing
pH, by the addition of hydrocarbonates [44], or addition of other metabolites [45].
The value of kd ∈ [300;6000] s�1 for whole cellular surface [46]. For intercellular
communication, only part of the surface is used.

2.4 Solution diagram

For the analysis of stability and location of bifurcations of stationary states and for
simulations of the system, we used the program CONT [47, 48]. A solution diagram
was obtained as the result of a one-parameter continuation. The solution diagram for
ADP concentration in the first cell as a function of σinh and fixed σM = 100 s�1,
kd = 0.1 s�1 is shown in Figure 2. The system has a stable uniform stationary state
from σinh ∈ [0 s�1, 17.8 s�1] and σinh ∈ [95.3 s�1, 100 s�1] marked by a solid red line. In
between the stable uniform stationary state, there is a region of stable uniform oscil-
lations that occurred via subcritical Hopf bifurcation from the left side and supercrit-
ical Hopf bifurcation from the right side, shown by black curves of minima and
maxima of concentration of ADP. Inside this region of stable uniform oscillations,
there are multiple branches of discrete Turing patterns that occurred from branch
point bifurcations marked by a blue dashed line. These patterns are secondarily
stabilized by supercritical Hopf bifurcations and, therefore, they cannot occur spon-
taneously just by varying σinh or kd. The stable discrete nonuniform patterns are
marked by solid red curves. The solution diagram only shows possibilities of station-
ary concentrations of ADP in the first cell. All discrete nonuniform patterns shown
simultaneously in all 20 cells are discussed in the Results section.

3. Results

Our goal is to provide a method for assessing organism development toxicity. To
create the method, we need to map all possible patterns inside the 2D blastula model.
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For the purpose of machine reading and loading the resulting discrete patterns, we are
assigning a letter to certain ranges of stationary concentrations of ADP, Table 1.

A uniform stationary state has thus pattern C20 with its dimensionless stationary
concentration of ADP = 30.6667.

The 2D blastula model can operate in a regime of uniform oscillations, uniform
stationary state, and according to Figure 2 at least 12 discrete nonuniform patterns are
possible for kd = 0.1 s�1. The analysis of the occurrence of the discrete nonuniform
patterns was done by varying the input concentration of ATP by trying all the values
within range νi(t) ∈ [0 s�1, 4 s�1] for each cell and also for all combinations of 20 cells.

The same analysis can be done for any chemical input we define as a metabolic
pathway inside each cell. The guide for our analysis under constant kd is the solution
diagram in Figure 2, or it could be a bifurcation diagram in the whole parameter plane
of kd and σinh. A simulation of a transition between uniform oscillations and discrete
nonuniform patterns on six randomly chosen cells is shown in Figure 3. The figure is
divided into four subfigures illustrating the perturbations and concentrations in the
time interval [0 s, 4000 s]. Figure 3a) shows the values of ν1(t), ν6(t), and ν11(t).
Figure 3b) shows the values of ν2(t), ν10(t), and ν20(t). Figure 3c) shows the time-

Figure 2.
Solution diagram of ADP in the first cell for σM = 100 s�1, kd = 0.1 s�1,

ν = 1.84 s�1. Red solid curve – Stable
stationary state, blue dashed curve – Unstable stationary state, solid black curve – Stable minima and maxima of
glycolytic oscillations, dashed black curve – Unstable minima and maxima of glycolytic oscillations, Hopf
bifurcation points, and branch points are omitted for the purpose of readability of the solution diagram.

Letter Range of stationary concentration of ADP

A [1, 12]

B (12, 28)

C [28, 36]

D (36, 47)

E [47, 100]

Table 1.
Assignation of a letter to a stationary concentration of ADP.
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dependent concentration of ADP at cell 1, cell 6, and cell 11. Figure 3d) shows the
concentration of ADP in cell 2, cell 10, and cell 20. The initial concentrations of both
ATP and ADP in every cell are set at value 10, which leads to uniform oscillations. The

Figure 3.
Dynamic simulation of transitions in between uniform oscillations and nonuniform discrete patterns,
σM = 100 s�1, σinh = 35 s�1, kd = 0.1 s�1: a) red curve represents ν1, the green curve represents ν11, the blue dashed
curve represents ν6; b) red curve represents ν2, the green curve represents ν20, and the blue dashed curve represents
ν10; c) ADP concentrations in selected cells: Red curve – Cell #1, green curve – Cell #11, blue curve – Cell #6 d)
ADP concentrations in selected cells: Red curve – Cell #2, green curve – Cell #20, blue curve – Cell #10.

6

Bioinformatics and Medical Informatics - Annual Volume 2023



system oscillates until the first perturbation is applied at 500 seconds. We have
decided to use only two types of perturbation values, and that is νi(t) = 3.84 s�1 and no
flow of substrate, νi(t) = 0 s�1, while outside perturbation times, the flow of substrate
is set according to our previous studies as νi(t) = 1.84 s�1 [25]. The first perturbation is
νi(tk) = 3.84 s�1 for i = {2,3,6,7,10,11,14,15,18,19} and νj(tk) = 0 s�1 for
j = {1,4,5,8,9,12,13,16,17,20} applied in the time interval [500 s, 600 s]. It leads to a
transition from uniform oscillation to nonuniform pattern type
AE2A2E2A2E2A2E2A2E2A. The second perturbation: νi(tl) = 0 s�1 for
i = {2,3,6,7,10,11,14,15,18,19} and νj(tl) = 3.84 s�1 for j = {1,4,5,8,9,12,13,16,17,20} is
applied in the time interval [1500s, 1600s]. This perturbation leads to a transition
between two nonuniform patterns from type AE2A2E2A2E2A2E2A2E2A to a type
EA2E2A2E2A2E2A2E2A2E. The third perturbation has the same νi(t) values as the first
perturbation, and it is applied in the time interval [1900s, 2000s]. It leads to a
transition between two nonuniform stationary patterns from the type
EA2E2A2E2A2E2A2E2A2E to the type AE2A2E2A2E2A2E2A2E2A. All the patterns in this
example are the same type, just rotated by two cells toward each other. The fourth
perturbation is defined as νi(tz) = 3.84 s�1 for i = {1,2,3,6,7,10,11,14,15,18,19} and
νj(tz) = 0 s�1 for j = {4,5,8,9,12,13,16,17,20}, and it is applied in the time interval
[3000 s, 3100 s]. The symmetry of νi(t) values are selected such that they do not
correspond to any stationary pattern for this parameter region. The application of
such perturbation leads to a transition from pattern type AE2A2E2A2E2A2E2A2E2A
back to uniform oscillation. The uniform oscillations prevail until the end of the
simulation at 4000 seconds.

To assess all accessible discrete nonuniform patterns, we used initial conditions
taken from the solution diagram in Figure 2, or in case any pattern occurs for differ-
ent parameters than those used in Figure 2, we took the initial conditions from the
whole parameter space we have analyzed.

The first set of discrete nonuniform patterns is presented in Figure 4. The patterns
in Figure 4a and b) show concentration profile E2A3E2A3E2A3E2A3. They occur for
σinh = 60 s�1 and kd = 0.1 s�1. We can also describe the pattern using wavenumber,
defined as the number of wavelengths per the distance of 20 cells. For the case of
Figure 4a and b), the wavenumber is 4 for pattern E2A3. The patterns in Figure 4c
and d) are different as they represent C4DC4DC4DC4D with wavenumber 4. They
exist for σinh = 26 s�1, kd = 0.1 s�1. The nonuniform pattern in Figure 4e) has pattern
A2BCD4CBA2BCD4CB, and it occurs for σinh = 35 s�1, kd = 0.55 s�1. The wavenumber
of it is 2. This pattern is present in five rotations positions within the 2D blastula
model. The remaining five rotation positions of this pattern are found for σinh = 60 s�1

and kd = 0.55 s�1, but we decided not to show it as the pattern A2BCD4CBA2BCD4CB is
the same.

The second set of discrete nonuniform patterns is specific. Figure 5 shows nine
discrete patterns which coexist simultaneously for σinh = 35 s�1 and kd = 0.1 s�1 and are
not all just rotations of the same pattern. The patterns in Figure 5a–d) show concen-
tration profile A2E2A2E2A2E2A2E2A2E2, which has wavenumber 5. The patterns in
Figure 5e–g) appear to be somehow connected by their concentration profile values,
but after careful examination, they are three different patterns. The pattern in
Figure 5e) has the concentration code D2CAD2ACD2A2E2A2E2A2, the pattern in
Figure 5f) has the concentration code DEA2E2A2EDACDEA2EDCA, and the
Figure 5g) has the concentration code D3A2E2A2D3ADEA2EDA. The wavenumber of
all three patterns is 1. These three patterns are highly irregular compared to other
patterns, and they may be responsible for either unwanted development mutation or
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are necessary to create some type of polarity in the organism for development beyond
blastula and gastrula. The pattern in Figure 5h and i) has concentration profile
A2D3A2D3A2D3A2D3 and the wavenumber 4.

4. Discussion

The coexistence of multiple patterns for the same set of parameters illustrated in
Figure 5 allows for multiple morphogenetic results. Our analysis of the model has
shown there is not a simple pattern with one minimum of concentration of ADP and
one maximum of concentration of ADP, and with the wavenumber 1, which we would
expect to start gastrulation. There are, however, three patterns with wavenumber 1,
where we can observe certain concentration profiles with both maxima and minima.

This might be the pattern, which could start gastrulation as a result of a concen-
tration profile in 10 cells altogether or all 20 cells. In these cases, we expect the
gastrulation to start at D2 in between …CAD2AC… or it can start at A2 in between
…DEA2ED… or finally it can occur at A2 in between …DEA2ED… We can notice the
last two cases have the same structure. This might be either a mechanism to ensure
that two patterns can lead to gastrulation or our universal 2D blastula model incorpo-
rating both gastrulation and limb development to multiple organisms with a tail and
without a tail. Such organism would have only one axis of body symmetry. The

Figure 4.
Discrete patterns of the stationary concentrations of ADP in 20 cells of the artificial blastula arranged in the time
interval [500 s, 1000 s] for various sets of parameters σM = 100 s�1. a) σinh = 60 s�1, kd = 0.1 s�1, b)
σinh = 60 s�1, kd = 0.1 s�1, c) σinh = 26 s�1, kd = 0.1 s�1, d) σinh = 26 s�1, kd = 0.1 s�1, and e) σinh = 35 s�1,
kd = 0.55 s�1. Each cell is numbered by a green number. The blue dashed line corresponds to ADP concentration in
an unstable uniform stationary state. The red lines represent stationary concentrations of ADP in each cell.
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concentration profiles show that a variety of perturbations can lead to the same
pattern type, just rotated by a few cells. Since our model can also serve as a model for
developing organism or may set prepatterns for future limb development creating
multiple axes of body symmetry. The importance of growing legs on a position shifted
by π/10, while all limbs have a constant position to each other, is insignificant. What

Figure 5.
Discrete patterns of the stationary concentrations of ADP in 20 cells of the artificial blastula arranged in the time
interval [500 s, 1000 s] for σM = 100 s�1, σinh = 35 s�1, kd = 0.1 s�1 each cell is numbered by a green number.
Notation is shown in Figure 4.
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could be a problem if the perturbation switches the pattern from wavenumber 4 to
wavenumber 5 or vice versa. A chemical causing this is toxic toward morphogenetic
development, because the organism will grow a tail when it is not supposed to or vice
versa. If applied to a growing palm, a perturbing chemical will influence a number of
digits.

For the purpose of a method of obtaining chemoinformatics toxicity information
in living developing organisms, our 2D blastula model serves only as a skeleton
hybrid/artificial organism since it only works with ATP and ADP and takes into
account only the anaerobic part of glycolysis via kinetic parameters. For the purpose
of modeling the pattern behavior of cancer cells [49] due to the Warburg effect [50],
it can be extended toward the full model of anaerobic glycolysis using the model
proposed by Hynne et al. [51, 52]. If we want to assess the pattern toxicity toward cells
with a whole glycolytic reaction chain, including aerobic part of glycolysis [7], it is
possible to incorporate artificial mitochondria [53, 54].

Our long-term goal is the creation of an array [55] of artificial cells [56], which
could simulate behavior of blastula or even start a shape development, depending on
the capabilities of the artificial cell.

5. Conclusions

We have performed an analysis of the stability and bifurcation of stationary states
for the 2D model of blastula consisting of 20 coupled cells. The chemistry of each cell
is described by the two-variable model of glycolysis (cf. Eq. (3)). The system shows a
remarkable number of discrete Turing patterns and can be used to model different
phenomena.

One of them is the application of coupled cells as a chemical memory unit. Differ-
ent patterns can be used for different symbol coding. Figure 2 suggests a straightfor-
ward method of switching between discrete patterns. In order to optimize memory,
an extensive study on the best strategy for switching between patterns is necessary.

The introduced model can also serve as an artificial living organism for studies on
developmental toxicity. We have chosen a parameter plane of σinh or kd while having
constant σM = 100 s�1. Using dynamic simulation in program CONT by varying input
function νi(t) ∈ [0 s�1, 4 s�1] for each and every i-th cell for time 100 seconds, we
have found and classified eight discrete patterns. Each pattern has been classified
based on its concentration value by the letters ABCDE. We have found five patterns,
which are just rotated within the 2D blastula and therefore can serve for future
development or limbs as a prepattern, specifically E2A3 with wavenumber 4, C4Dwith
wavenumber 4, A2BCD4CB with wavenumber 2, A2E2 with wavenumber 5, and A2D3

with wavenumber 4. These patterns can lead either to the organism growing four
limbs or five limbs or growing four or five fingers on the limb. We have also found
three patterns, which resent a discrete “wave” [cf. Figure 5e–g]. However, these
patterns have mirror symmetry and therefore cannot have wavenumber 2. It opens an
opportunity for gastrulation, or it can lead to a prepattern for later body symmetry
development with one axis. These patterns are specifically D2CAD2ACD2A2E2A2E2A2;
DEA2E2A2EDACDEA2EDCA, and D3A2E2A2D3ADEA2EDA. In these cases, we expect
the gastrulation to start at D2 in between …CAD2AC… or it can start at A2 in between
…DEA2ED… or finally it can occur at A2 in between …DEA2ED…

Our analysis of pattern occurrence inside artificial 2D blastula should generalize
the current cheminformatics methods to include toxicological databases toward the
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potential development of living organisms while not actually harming animals. It can
also extend cheminformatics databases about toxicity toward cancer cells, since the
model incorporates anaerobic glycolysis and, therefore, can describe the Warburg
effect. The model currently works with ATP and ADP but can be extended toward all
species taking part in glycolysis. It can also incorporate artificial mitochondria to work
with aerobic glycolysis.
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