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Introduction

According to Stock and Watson [2004] the combination of the models generates
better forecast then the single model. A combination of forecasts is a good choice
when it is not possible to distinguish one dominant model [Timmermann 2006].
Another argument for a combination is the lack of stationarity in data generating
process, what can lead to the lack of stability in combination weights.

Searching for the best forecasting models for Polish WIG20 index among
GARCH under the assumption of similar dynamic of the market comprises the
subject of the article by Buszkowska [2008]. The point of the following paper is
the comparison of the best volatility forecasting models for WIG20 index received
in the paper Buszkowska [2008] with the optimal volatility forecasting models for
various ARMA specification. The final purpose is the comparison of the previ-
ous results with the forecasts of optimal linear and nonlinear combinations of the
best models. The aim is to verify if there exist the better prognostic model, when
comparing mean squared error for WIG20 then received in Buszkowska [2008].
Then we investigate if optimal linear combination of forecasts in a sense of mean
squared error, for WIG20 outperform the nonlinear one. We assign the optimal
coefficients for linear and nonlinear combinations of the twoo forecasts solving
the nonlinear least squares problem and presuming the patterns introduced by
Timmermann [2006] for the linear case. We compare the volatility forecasts with
daily realized volatility, calculated as the sum of the squared intraday returns. We
investigate the results obtained with the Model Confidence Set (MCS) method of
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ansen et al [2003] for different measures of the realized volatility. Agreebly with
e the conclusion of the paper Buszkowska [2008] we assume one 5 minute fre-
quency if intraday quotations . We compare MCS sets for MSE known as the ro-
bust function of error [Patton, Sheppard 2007).

1. The specyfication of the conditional volatility models

the article we consider the various types of GARCH models. The choice results
from the fact that GARCH are the most popular in aplications volatility models
of financial instruments by reason of the simple construction, the easy estimation
and the natural interpretations. We use the following GARCH specifications

+ GARCH(p, q)

Y= 0,&

7= 2 2
g, _w+iai}’r—i +iﬂjar-,”
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g, ~idd(0,1), >0, B;>0, a >0.

« RISCMETRICS
RISCMETRICS is a GARCH model where the ARCH and GARCH coefficients
are fixed.

2 _

o,

w+(1=-1) y!, +Ao; .

In practice, one assumes that w = 0 and A = 0.94 for daily data and A = 0.97 for
weekly data.

We establish different distributions of error: Gauss, Student-f, skewed-Stu-
ent-t and GED.

« EGARCH :
GARCH is the first model of a type GARCH, which describes the effect of asym-
etry, proposed by Nelson in 1991, but modified by Bollerslev and Mikkelsen in
996 to the following form.

Let ¢ be an independently and identically distributed process with E(e) = 0 and
Var(e,) = 1. Define

g(£‘)E NeE Y, [|£l|_E|£(|J’
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then
loga; =w+[1 —,B(L)]_l [1-a(L)]g(e,,)s
where
a(l) = 1-aL- ... -a L,
B(L) = B,L+B.L*+ ... +[5PL”.
For the Normal distribution:

E([e,]) =

2
=3

For the skewed Student-t distribution:

4 F(l—;“v) o
E+%' Jﬁr(g)

where & = 1 for the symmetric Student distribution. The parameter v is called the
number of degrees of freedom.
For the GED distribution

E(le.])=

>

where 0<v <o, ) =

« GJR
GJR is the model by Glosten, Jagannathan and Runkle from 1993 defined by

q P
Gf:w+2((x,~)’,2_;+7 lyl r) Z } ’J’
i=l j=1
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there S, is the auxiliary variable, which is one when the value of the y, is nega-
ive and 0 when it is positive. It is assumed that the impact of ¢ on the conditional
ariance o} is different when ¢, is positive or negative.

). Forecasts combinations

he combination is the good alternative when it is impossible to identify one pre-
lominant model [Timmermann 2006]. Combinations of forecasts are more stable
hen individual forecasts [Stock, Watson 2004].

The simplest combination is linear with the identical coefficients and the sum
of the weights equels one.

o 14,
8 (ynh; Wy ihe ) = EZ ywh,(,p

J=

vhere y,,,  is the forecast, and w,,, ,

The forecast error is defined by

is the weight.

(4 e Lo S
€iint = Vish _g(yh-h.f’ wt+h.t)’
y,., is a realization of some variable.

The parametrs of the optimal combinations of the forecasts in this case are the
solution of the following problem

w* =arg minE[L(e‘(w))]. (1)

weW,
where L denotes mean squared error (MSE) loss.

Under MSE the combination weights only depend on the first two moments of
the joint distribution of y,, and j,,,,,

2
[}’Hh ] - |:[‘}’m-.x :} a-y"h.xo,/v}.'h’h.l
yH»h yi’nh.‘ O-Y;'zok,:z).'jnh.t

For MSE Timmermann [2006] obtained the following optimal weights:

L o) - - = -1
wo _y)'uh,t @ y}uﬁ,v’ < Zj'}"uho-}’,{'uh.l' (2)
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The combination which doesn’t contain the correlation between forecasts out-
perform more sophisticated schemes. The assumption that the individual fore-
casts are unbiased implies unbiased forecast of the combination under condition
that the weight’s sum is one and the constant is correct [Timmermann 2006].

Consider the combination of two forecasts y,, y,. Let e, i e, denote the fore-
cast errors. Assume e, ~ (0, o) ), e, ~ (0, 022), where o? = Var (e,), 07 = Var (e,) and
0,, = p,,0,0, is the covariance between e, and ¢, and p , is their correlation.

The optimal weights for this combination by Timmermann (2005) have the
form

2 2
0,0y g, — 0y

©)

1-w*=

w* = =
2 Z 2
0, +0,:=207,

T2 2 2
0, +0,—20,,

The identical weights are optimal if the forecast variances are the same inde-
pendently of the correlation between forecasts on condition that the forecasts are
unbiased [Timmermann 2006]. The natural example is the following scheme of
two forecasts:

(3)Gi+30) @

When the forecast are unbiased Timmermann [2006] propose the combination
that gives the inverse weights to the forecasts with the assumption that the corre-
lation is zero:

o o
= 2 = 1
winv - ﬁ’ 1"‘l')l"V = 2 2" (5)
g, +0, g, +0,
For N forecasts one can assume 0 < w < 1,i=1, ..., N to make the values of

the combination forecasts be in the interval of values of the individual forecasts.
Let

jlc =wy, +(1_w)5'z’ y_j/l =€ ~N(0,02), y_j’z =€, ~(["2’ UZ)’

so j, is the biased forecast and assume cov (e, e,) = 0, = p .07
Timmermann obtained

MSE(}?C)—MSE()'/'):(1~w)02((1—w)(%) _20(1-p, )).
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So if

2 2w(1-
(.“_z) >—w, then MSE(j'C)>MSE(}A'1)'
g —w

The condition allways holds for p , = 1. In this case the forecast of the combina-
tion of models doesn’t outperform the unbiased forcest of the simple model. What
is more the bigger is the bias of the forecast the smaller is the advantage of the
combination. If the forecasts are biased then identical weights are optimal when
the forecast errors have the same variance and identical correlation between fore-
casts [Timmermann 2006].

The optimal weights problem may be formulated as the optimalization task
of minimalization of expected forecast error variance X = E[ee’] where e=ty—y
with the condition that the sum of weights is one and the individual forecasts are
unbiased:

min w'Zew,
w't=1,
where t is the vector of ones.

For the invertible covariance matrix X Timmerman [2005] obtains the follow-
ing optimal weights:

w = (I's1)" 270 (6)
The problem of the optimal combination can be solved as the following test
H,:E[L(¢3 ") | =E[ (6% £ (ht h.6)) ]
H*:E[L(62K")]> B[ L(d2 £ (n, hf,e))].

The test statistic of Diebold-Mariano and West (DM W) can be used in the test.
Let define the difference

d, =L(6%,h*)~L(6% f (k. n!.0)).

Then the DMW test statistic is the following:
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where

T.

Y,

t=1

dT

~ |

Under the null hypothesis the test statistic has normal distribution.
If

a(y—jf,)>a(y—}72),

cov(y—j/,,y—jiz);ta(y—jlz)o(y—j/,),

the optima model is the combination of forecasts, Timmermann [2006].

Another scheme can be created on the base of the ranking of models by Aiolfi
and Timmermann [2006]. Let R, be the position of the i-model in ranking. The
weighs od the combination arc the following:

it A
2=)

The combination doesn’t allow for correlations between forecasts. It is insus-
ceptible on exstremal values.

There may occur the two types of nonlinear combinations. The nonlinear func-
tion of the forecasts and the nonlinear function of weights.

The nonlinear function of error:

(7)

5’c =w, + wlc(j')

and the nonlinear combinations

Kamsatra [1996] proposes the nonlinear combination with nonlinear weights
with the model of logistic function, which distinguish extermal values of the fore-
casts. The changes of the value of the logistic function are minimal when the val-
ues of variables are smaller then the fixed value and the function increases to one
when the variables surpass the value.

N p
j’c ::BO+Z:Bjyj+Zaig(zi’ Yi)’ (8)
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g(z Y,):[H CXP[—I'(}’O,- +iy,,jzj]ﬂ 3

Z, = > PE{O)I’Z,?’},

where

y - the estymator of the mean value of the forecast.

0 - the estimator of the standard deviation of the forecast.

Donaldson and Kamsatra proved that this model applied to twoo forecasting
models: moving average variance model and GARCH(1, 1) surpass other tradi-
tional combination schemes. For ¢, =R, —p, —p,R,_, the moving average variance
model is

MAYV, :(i)Zé,{,..
nJo

The optimal coefficients of the nonlinear combination can not be assign analiti-
cally from the equation (1). The nonlinear least square estimation is needed. The
same solution is in the case of the geometric mean of the forecasts, which allow
to avoid a problem of the negative volatilities, preposed by Patton and Sheppard
[2007]. The formula is the following:

}'c :exp(wlln(j’x)'*'wz ln(j'z))'

To assign the weights the Gauss-Newton algorithm may be used which gives
the solution to the problem (1).

3. The realized volatility

The realized volatility can be calculated by summing the squares of intraday re-
turns. With the use of the equation which allow for the night return it is defined
as follow.

N
AED Y ©)

where the intraday return in the day » and in the moment d is :
r.,=100(InP ,-InP , ), r =100(InP  -InP_ ),

N is the numer of periods in a day.
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The alternative approach was proposed by Andersen and Bollerslev in 1997.
They suggested reprezenting the daily volatility as the sum of intraday returns

:ZN:rf,,. (10)

They suggest mu]tlplymg a7, b (1 + ¢), where c is the posmve constant [Mar-
tens 2002]. They choose ( o, + 0 g o>, as the constant ¢, where o7, = = Var(r, ) and

o). =Var| ) r, | [Koopman et al 2005]. Then the realized volatility can be ex-

t=1
pressed:

2 2
g_+0
0y, =212, (11)

In the article MSE means the mean squared crror, where N is the number of fore
casts.

N
MSE=N"Y (o}, ~d1,),

t=1

where l € {1, 2,3}, k € {1, ..., m} is the numer of models from the considered set.
In the followmg formula G, is the forecast of volatility from the model k on the
moment t, 07, is the value of the realized volatility of the type  in the moment ¢.

4. The Model Confidence Set (MCS)

The MCS procedure consists of the test and the elimination rule. One check if the
null hypothesis is true (if the loss functions for the models are the same to the ex-

pected value).
Let M, be a set of forecasting models, {i = 1, ..., m }. The objects from the set
are evaluated out of sample in terms of the loss functlon L, . L, , - denotes the loss

that is associated with the object i in the period t. One deﬁnes the relative per-
formance of the models by

=L -L_ for jmeM.

i, t it )t

The null hypothesis is:

v E@ )= = o

i, t
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The procedure is being repeated until the null hypothesis is accepted. The MCS
is the set of models after the elimination. We denote it M * » where a is the ass-
umed level of confidence.

The set of superior objects is defined as:

M*=lie M,:E(d,

it

)SO ,foralljeMo}.
The set of inferior objects for j € M, is defined as:
M E{z eM, E(d,.j,,)>0 , forsomejeMo}.

Let M be a set of models being reduced in the process of elimination. We use A
the following algorthm: .

Step 1: M = M.

Step 2, 1F H, s accepted define M =M,

Otherwise define the loss of the mudc] i to the average loss from models from v

g ==Y,

M joa

and the worst model

i* =argmax————.
=5 JVar(di.)

Then eliminate i* from M and repeat the procedure beginning with Step 2.

5. Data

We consider the models indicated as the best under the assumption of the similar

dynamic of the market in the article by Buszkowska [2008]. There are

(1) GARCH(1, 1) with Gaussian distribution of error,
w = 0.015(0.0066), a = 0.403(0.0067), ,Bl =0.953(0.0078).

(2) RiskMetrics with Student distribution of error, Student DF = 9.4884(2.0357)
and A = 0.94.

(3) RiskMetrics with GED for A = 0.94 and GED = 1.4367(0.0728).

(4) RiskMetrics with skewed-Student-¢ distribution of error for A = 0.94,
Student DF = 9.4524 (2.0108), Asymmetry = 0.0432(0.0357), Tail =
9.4527(2.0108).
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(5) RiskMetrics with Gaussian distribution of error, for A = 0.94

and 446 GARCH-type models estimated with different types of ARMA:
ARMA(0, 0)-GARCH(1, 1), ARMAC(1, 0)-GARCH(1, 1),

ARMA(0, 1)-GARCH(1, 1), ARMAC(1, 1)-GARCH, ARMAC(1, 2)-GARCH(1, 1),
ARMA(2, 1)-GARCH(1, 1), ARMA(2, 2)-GARCH(1, 1)

with Gauss, Student-t, Skewed-Stident-f and GED since the type of ARMA model
affects the volatility forecasts from GARCH. We rejected the models with not sig-
nificant parameters. In the empirical investigation we use 1739 daily observations
of the WIG20 index, from October 12, 2000 till September 14, 2007 for model es-
timation.

Table 1. Descriptive statistics for the return series
(October 12, 2000 till September 14, 2007)

Max Min Mean St. Deviation | Skewness Kurtosis
5.4829 -6.4418 0.04833 1.4864 0.03617 4.0927

The next 265 data from August 28, 2006 till September 14, 2007 were exploited
for calculating volatility forecasts. To evaluate the quality of our forecasts we com-
pared them with the daily realized volatility calculated for 5 -minute intraday re-
turns. The realized volatility was calculated using formulas (9), (10) and (11).

For GARCH-type models forecasts as examples from the paper by Buszkowska
[2008], we consider:

(1) For 5 GARCH-type models

() B G5
g 5 NH5) TG 5 )7 5 Vs

The identical weights may be optimal as the investigated forecast erros have'
with the accuracy 0.01 the same variance and the same correlation between fore-
casts.

(2) The kombination on the base of the MCS according to the formula (7), that
doesn’t describe the correlation between forecasts. Ranking by using MCS.

for o7,, (10), y5 =0.43797, +0.2197, +0.1460 7, +0.1095 J, +0.0876,,

for a2, (9), y5=0.4379%, +0.219§, +0.1460 j, +0.1095 , +0.0876 }.,,
for o2, (11), y; =0.4379, +0.219§, +0.1460 , +0.1095 j, +0.0876 7,,
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1
= =0.219,
2(1+1+1+l l)
223 5
- 1 =0.1460
} O O IO T 4
3| l+—+—+—+4—
3 5
! =0.1095
4(, 1.1.1 1)
3 5
1
=0.0876.

5=
5-(l+l+l+l+l)
2 3 45

um of the coefficients is 1.
e combination of the two best forecasting models according to (2), since the
sts are biased.

05, (9), yi=-0.6953+0.5158 y, +0.7287 ,,
ro;,, (10), y:=-0.5841+0.4173y, +0.5231y,,
ro;, (11), y; =-0.5921+0.4204 y, +0.5266 y,.

e nonlinear combinations for the optimal proportions , according to Patton
eppard, [2006], assigned by using Gauss-Newton method.

ro;,, (10), y;=exp(-1.073-In(3,)+1.538-In(3,)),
¥i =exp(~1.069-In($,)+1.538-In(3,)),
rol,, 9), y, =exp(0.256-In(3,)+0.66-In(3,)),
ral,, (1), y, =exp(-1.07-In(3,)+1.54-In(3,)),
y5, =exp(-1.069-In(7,)+1.538-In(,)).

pirical results

in the investigation we analized the selected 5 GARCH type models received
best forecasting models, under the assumption of the similar dynamic of the
t, in the paper by Buszkowska (2008). We consider also the combinations
the section 3,
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For 5 min frequency of quotations and MSE we received the following results:

Table 2. The estimates of the p-values MCS for the realized volatility > , 5 min

L

frequency and MSE
The MSE p-value
exp(1.538-In(7,) -1.073-In(3,)) 0.7624
exp(-1.069-In(j,) +1.538-In(7,)) 1

Table 3. The estimates of the p-values MCS for the realized volatility o2 ,, 5 min

2, >
frequency and MSE :
The MSE p-value
1, 2,
5}'1 +§}’4 0.7790
exp(0.5In(3,) +0.5In(j,)) 0.7790
exp(0.256-In(j,) +0.66-1n(7,)) 1
Table 4. The estimates of the p-values MCS for the realized volatility a;', 5 min
frequency and MSE
The MSE p-value
exp(-1.069-In(, ) +1.538-In(},)) 1

For 02 i o7 the sets are almost the same. For o7 the MCS is different then
for 02 and o3. We notice that for o2 the linear combinations with the identical
weights, according to formula (3) produce worse forecasts then the combination
(1/3) y, +(2/3) y,, although the condition on equal variances and corelations in-
dicates equal weights of Timmermann is fulfilled. So the linear combination with-
out the constans may outperform the optimal combination with the constans.

We compared the 446 series of forecasts from models of the types
ARMA(0, 0)-GARCH(1 ,1), ARMA(1, 0)-GARCH(1, 1),

ARMA(0, 1)-GARCH(1, 1), ARMA(1, 1)-GARCH, ARMA(1, 2)-GARCH(1, 1),
ARMA(2, 1)-GARCH(1, 1), ARMA(2, 2)-GARCH(1, 1)

with Gauss, t-Student, skewed-Student-t and GED with the linear and nonlinear
combinations of their twoo serieses of foracasts of the previous types. We rejected
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dels with no convergence of model as FIEGARCH with produce very good
s and the FIAPARCH-CHUNG with also gives very good forecasts but it’s
cation is not introduced in the literature. We also rejected the models with
ificant parameters.

acheived the following model confidence sets.

e 8. The estimates of the p-values of MCS for the realized volatility o7 , 5 min

frequency and MSE
The MCS p-value
H with Gaussian distribution of error 1
(2,2)-GARCH with Gaussian 0.7755

ARMA(2, 2)-GARCH with Gaussian distribution of error we obtained the
ing parameter estimates

Cst(M) = 0.744(0.035), AR(1) =-1.0577(0.04652),
AR(2) = -0.8295(0.04911), MA(1) = 1.0546(0.0512),

MA(2) = 0.8164(0.0534), Cst(V) = 0.0136(0.0062),
a, = 0.0376(0.0064), P, = 0.9566(0.0076)

le 9. The estimates of the p-values of MCS for the realized volatility o7 , 5 min

frequency and MSE
The MCS p-value
A(2, 2)-RiskMetrics with GED 0.9903
CH with Gaussian 0.9903
ARCH with Gaussian 1

r ARMA(2, 2)-RiskMetrics with GED distribution of error we obtained the
ing parameter estimates

Cst(M) = 0.0783(0.0295), AR(1) = -1.1328(0.0372),
AR(2) = - 0.0685(0.0373), MA(1) = 1.1378(0.04)

(2) = 0.8607(0.0403), G.E.D.DF = 1.4258(0.0722), « =0.06, B, =0.94.
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For EGARCH with Gaussian distribution of error we obtained the following
parameter estimates

Cst(M) = 0.0874(0.0353), Cst(V) = 1.075(0.22056), «a, = 0.0602(0.3428),

B, = 0.989(0.0044), y, = 0.00239(0.0094), y, = 0.1012(0.0296).

Table 10. The estimates of the p-values of MCS for the realized volatility 62 , 5 min

30

frequency and MSE
The MCS p-value
GARCH with Gaussian distribution of error 1
ARMA(2, 2)-GARCH with Gaussian 0:7755

We took into account the following linear combination from the formula (2).
for a;,,-0.8316 +0.5201y,, +0.5299 y,,,
for 03 ,,-0.84024 +0.5237 y,, +0.5332 y,,,
where
¥, - GARCH(1, 1) with Gaussian distribution of error,
¥, — ARMA(2, 2)-GARCH(1, 1) with Gaussian distribution of error,
for o?,,~0.81566 +0.621432 §,, +0.7568353 §,,
where
7,5 - ARMA(2, 2)-RiskMetrics wirh GED distribution of error,
¥, - EGARCH(1, 1) with Gaussian distribution of error.
We received the following results:

Tabela 11. The estimates of the p-values of MCS for the realized volatility o] ,5m
10 min and 30 min frequencies and MSE

The MCS p-value
exp(-1.073-In(,) +1.538-In(,)) 0.6064
exp(~1.078-In (3,) +1.542 - In (5,)) 0.6064
exp(~1.069-1In(,) +1.538In(3,)) 1
exp(9.6387In(3,,) —9.1916-In(,,)) 0.6064
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. The estimates of the p-values of MCS for the realized volatility
10min and 30 min frequencies and MSE

z",5 min,

The MCS _p-value
T —
(yl)+;ln()'4)) 0.7141
In(,) +0.66-1n(7,)) 0.7141
7-In(j,,) +0.50022-In(3,,)) 1

The estimates of the p-values of MCS for the realized volatility o7 , 5 min,
10 min and 30 min frequencies and MSE

The MCS p-value

“In (7,)-155-In (3,)) 1
In (j)+1.538- In (3,)) 0.0758
In (j,)-1.07 -In (3,)) 0.0758
0- In(j,)-9.2306 - In (3,)) 0.0758

notice from the introduced tables that the sets for o7  and o?  are simi-
differ for g2 . The results for the 5 min, 10 min and 30 min frequenc1es
s are almost the same. Another observation is that the nonlinear com-
f forecasts outperform the forecast from the single model and from the
ear combinations for the all measures of realized volatility, o7 , 07  and
nlinear function of forecasts with the optimal coefficients of the form
(7,)+B,In(7,)) can be successfully used to generate better forecasts.

ons

e, we compared the volatility forecasts from a set of ARMA-GARCH
using the MCS method. Firstly we created a set of the best GARCH
r the WIG20 index and compared their forecasts with the optimal linear
ear combinations of the two forecasts.The analizis was performed for
bed types of the combinations of two forecasts. We received the MCS

nonlinear combinations. We concluded that the nonlinear combina-
two forecasts outperformed the optimal linear forecasts combinations
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of two forecasts and we introduced the optimal weights of the nonlinear combi-
nations received by Gauss-Newton method. Next we created the set of ARMA-
GARCH models for different ARMA specifications and selected the best fore-
casting models by the method MCS. For the best models from the set we created
linear and nonliner optimal combinations of two forecasts. In the end we com-
pared the forecasts of ARMA-GARCH models with the optimal combinations of
two forecasts of the models. In the presented tables the sets for o7 , and o2 are
similar but very differ for o2 . What is more, the nonlinear combmatlons of the
two forecasts outperform the forecast from the single model and from the optimal
lmear combinations, for all the measures of realized volatility, o7 , 07 ,and o? . For

» the linear combination without the constans outperforms the optlmal combl-
natxon with the constans. The results for the three different frequencies 5 min, 10
min and 30 min, doesn’t differ. The nonlinear function of forecasts with the opti-
mal coefficients of the form exp(B, -In(j,) +,-In(7,)) can be successfully used
to generate better forecasts (with smaller mean squared error).
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ROWNANIE PROGNOSTYCZNYCH MODELI ZMIENNOSCI
ICH KOMBINAC]I DLA INDEKSU WIG20 ZA POMOCA METODY
IORU UFNOSCI MODELI

Streszczenie

kombinacje prognoz moga by¢ lepszymi prognozami niz prognozy uzyska-
poszczegdlnych modeli. Celem pracy jest zastosowanie metodologii zbioru
i (MCS) do poréwnania zdolnosci prognostycznej réznych modeli zmien-

ych do dziennych zwrotéw notowan indeksu WIG20. Poréwnano wczes-
z prognozami otrzymanymi za pomocg optymalnych kombinacji liniowych
najlepszych modeli.



