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Introductions 
The position, dimensions and shape of shell structures are defined basing on the 

results of engineering or photogrammetric surveys. These structures are represented by 
series of points distributed on their external or internal surface, observed from reference 
points. Number of control points and the way of their distribution depend on the 
technique of shell observation in use, on accuracy requirements and on local conditions. 

The coordinates of control points are determined in 3D space, incidentally the 
observational model of space network is often reduced to horizontal and height 
components. Point estimation leading to discovery of unknowns' vector (the coordinates 
of reference points) is done by least squares method, realising the condition 

( ) ( )F T T= = − − →v P v w Ax P w Ax minimum      (1) 

where 
w - vector of residuals, 
A - coefficients' matrix, 
x - vector of unknowns, 
P - matrix of weight coefficients in a Markov sense for observed values, i.e. 

P Cov w= −( ) 1. 
The basis for making accuracy analysis of calculated surface parameters and their 

functions is covariance matrix Cov( , , )x y z  for coordinates of observed points. These 
coordinates are fixed with different accuracy and the degree of accuracy differentiation 
between individual points depends on the applied measuring technique. For example, in 
polar method, where coordinates of points Pi  are fixed according to dependence: 
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with 
X Y Zj j j, ,  - station coordinates, 

di      - slope distance from the station to a point Pi , 
ϕ i      - zenith angle to the point Pi , 
h j     - height of theodolite, 

Perelmuter Workshop on Dynamic Deformation Models, Haifa, 1994

This paper should be cited as: 
Latoś S., Preweda, E.: Position and shape parameters of second order surface estimated by 
points and intervals. Perelmuter Workshop on Dynamic Deformation Models, Haifa, 1994



a priori assumption on the same accuracy of calculated coordinates (what is often done 
in practice) inescapably leads to distortion of the estimated parameters' values. 

Owing to ill-conditioned set of approximation equations, small disturbances in 
the data cause relatively large disturbances in the solution of the problem. Therefore it is 
postulated, that for each of the measuring techniques it is good to analyse the accuracy 
of calculated coordinates of points representing the shell structure. 

The covariance matrix Cov( , , )x y z  for coordinates of calculated points will be 
determined according to the law of covariance propagation. The stochastic model will 
be accepted under the assumption, that covariances of observations are equal zero and 
that control points' coordinates X and observations L are independent i.e. 

Cov Cov Cov 0
0 Cov( , ( )

(X L) X
L

X
L)= 



 =
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while matrix Cov( )L  is a diagonal matrix of a shape 
{ }Cov( $ ) ( ), ( ), ( ), ( )L diag V V V d V h= α ϕ        (4)

A matrix of covariances of reference points' coordinates, appearing in the stochastic 
model, may be approximated according to following models: 

Model 1. Cov 0( $ )X =       (5) 

- it means assuming coordinates of reference points as errorless. 
Model 2. Cov E( $ ) $X = σ 2       (6) 

- it means coordinates equally accurate and uncorrelated 
   ( $σ 2  - estimator of variance's coefficient,  E  - unit matrix). 

Model 3. Cov D( $ ) $X = σ 2        (7) 

- it means uncorrelated coordinates of different accuracy 
(D - diagonal matrix). 

Model 4. Cov W( $ ) $X = σ 2       (8) 

- theoretically a correct model, it takes into account the covariances 
   between the reference points 

According to the law of covariance propagation we will write 
Cov S Cov S( , , ) ( , )x y z X LT=  (9) 
where 

S - matrix composed from partial derivatives of functions of (2) type in relation 
to adequate coordinates of reference points and observations. 

A choice of stochastic model depends on definite conditions and required 
accuracies. It should be noticed that in case of simplified stochastic models (defined by 
equations (5) (6) or (7)) also numerical calculations may be simplified, because the 
matrix Cov( , , )x y z  could always be written in a shape: 
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 In case of redundant observations mathematical model in its stochastic part 
would be similar to the one given above, while functional part would be formulated 
through correction equations of a type 
ε = B x + w$                    (10) 

 
Estimating parameters of second order surface equation. 
General equation of second order surface has the form 
F x y z a x a xy a xz a x

a y a yz a y
a z a z

a

( , , ) = + + + +
+ + +

+ +
=

11
2

12 13 14

22
2

23 24

33
2

34

44

2 2 2
2 2

2
0

           (11) 

The values of parameters aij  are estimated on the grounds of coordinates x,y,z of a 

specified number of points representing the shell structure. 
Equation (11) could be written in the form 
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with 
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a
a
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In practice number of observed points is always considerably greater than the number of 
unknown parameters bij . Therefore instead of the set of equation (12) suitable 

approximation equations are set together 
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(13) 
To increase the accuracy of computations the linear (in relation to unknowns) function 
(13) could be expanded into series and then its matrix notation is 
B x g= + ε                    (14) 
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( n - number of observed points,  u - number of unknowns). 
ε  is a random vector with covariance matrix Cov( )ε , which is defined according to 
dependence 
Cov N Cov , , N( ) ( )ε = T x y z                  (15) 
where 

N - is a matrix composed from partial derivatives of functions of type (12) in relation 
to the coordinates x,y,z of observed points (it is a matrix of components of vectors 
normal to the surface), 

 Cov , ,( )x y z  - is covariance matrix for coordinates of points representing the 
shell. 
Matrix N is defined through 
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The unbiased estimator $x  of the vector of unknowns will be evaluated with solving 
generalized linear problem of the least squares method: 

( ) ( )ε εT T TP g Bx Cov g Bx v P v= − − = →−$ ( ) $ε 1 minimum            (16) 

The vector $x  of estimated surface parameters will be evaluated with the help of 
pseudoinverse matrix 
$x B w= +                    (17) 
The empirical value of variance estimator $σ o

2 , being the punctual evaluation of the 

solution (16) is defined generally in accordance with formula 
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Confidence interval for the variance is based on χ2  statistic. Using the variance 
estimator, for (n-u) degrees of freedom and a certain confidence level ( )1−α  occurs 
following relationship 
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  of χ2  distribution with (n-u) degrees of freedom. 

It should be noticed, that in our case standard deviation $σ o  is only a measure of fitting 

the mathematical model to observed geometric state of the shell and basing on it we can 
only conclude about adequacy of the model. However it can not enter into accuracy 
evaluation of estimated parameters and their functions, because apart from survey errors 
it includes errors in set-up of the shell and its deformations. Precise separating of these 
errors is not possible of course. To perform the valuation of accuracy one should a priori 
estimate the influence of errors scoring from measurements $σ pom

2 , and this measure 

accept as the estimator of the unit variance. 
 According to the above, covariance matrix for the vector of unknowns $x  is 
expressed by the formula 

( ) ( )Cov B B$ $x pom
T

= + +σ 2                  (18) 

 Confidence interval for the unknown surface parameters results from Student's 
statistic. Using symmetric two-sided intervals we can write 

$ , $x = ± − −
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α
 in Student's distribution with (n-u) 

degrees of freedom, while $σ x  is the estimator of standard deviation for individual 

unknowns. Components of this vector are computed using matrix (18). 
( )[ ]$ $

,σ x i i ix= Cov                   (20) 

 
Estimating coordinates of the centre for second order surface. 
 All the diameters of a central quadric, i.e. the surface for which invariable 
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is different from zero, criss-cross in one point called the centre of quadric. Using the 
components of a vector normal to the surface of second order, which coordinates for the 



 

point fixing the centre of symmetry will equal zero, we can set following system of 
equations: 
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Applying Cramer's formulae, with symbols 
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estimators of the coordinates will be calculated from 
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Covariance matrix for these estimators is given by 
Cov , , S Cov x So o o( $ $ $ ) ( $)x y z T=                 (24) 

with  
 S S S S= x y zo o o

 

where  
 S , S , Sx y zo o o

are vectors of partial derivatives of function (23) in relation to 
 parameters bij of the surface. 

On the grounds of estimated covariance matrix we can fix, at the level (1− α), a 
confidence ellipsoid for the centre of approximated surface, with semi-axes 

( )a i i( ) ,1 3 1
2

−
= × −α

λ χ α  

and corresponding to them normalised direction vectors τ λ( ) i . 
The latent roots λ i  and attached to them latent vectors si  result from spectral 

decomposition of matrix (24), while ( )χ α3 1
2

, −  is a quantile of order ( )1− α  in χ2  

distribution with 3 degrees of freedom. 
 
Estimating principal semi-axes of second order surface. 
 The precise dimensions of principal semi-axes of second order surface one ought 
to transform function (12) into canonical through appropriate turn and displacement of 
coordinate system axes. 
Directions of principal axes are in line with directions of  latent vectors of matrix 
composed from coefficients of distinctive quadratic form of equation (12) 
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The latent roots of this matrix result from the condition: 
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 Using the calculated latent roots λ λ λ1 2 3, ,  we can present the surface equation in 
the canonical form. If invariable K ≠ 0 (central surfaces), then 
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For K = 0, J ≠ 0, the surface equation can be reduced to the form 
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where 
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 Arranging the latent roots in such a way, that in case of an ellipsoid the roots 
with the same sign would fulfil the condition λ λ λ1 2 3≤ ≤ , and in case of hyperboloid 
and a cone λ λ1 2≤ , we are then able to calculate the estimators of principal semi-axes 

of central surfaces from the formulae 
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              (28) 

(it happens that  a b c≥ ≥  - for an ellipsoid and a b≥  for hyperboloid and a cone)  
with 

 W
L
K

x b y b z b bo o o= = + + +$ $ $14 24 34 44  

 The accuracy of determined values of principal semi-axes depends on accuracy 
of surface parameters, those estimated before. Covariance matrix for the semi-axes 
could be written as general formula 
Cov S Cov x S( $, $ , $) ( $)a b c T=                  

(29) 
with   
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where S S Sa b c, ,  are the vectors of partial derivatives of function (28) type in relation to 
parameters bij of surface, while Cov x( $)  is covariance matrix of these parameters. 

Estimating directions of principal axes for model surface. 
 With each of main directions in the system 0,x,y,z corresponds one of the latent 
roots. Direction cosines of principal axes, with b11 0= , must fulfil the conditions: 
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(30) 
where α β γ, , - angles between the main direction and suitable axes of rectangular 

coordinate system. 
Denoting by M j appropriate matrix minors (25) 
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the solution of the system (30) could be expressed with the formulae: 
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where :   t  is a parameter whereas B M B M B Mα β γ= = − =1 2 3; ; . 

Under assumption, that at least one the minors is different from zero, exercising the 
condition 
cos cos cos2 2 2 1α β γ+ + =  
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Introducing t to equations (32) we will estimate the positions of semi-axes in relation to 
accepted coordinate system. 
Deflection angle of structure's geometric axis from the plumb line is 

$ cosγ
γ

= arc
B
B

 

Azimuth of inclination will be calculated according to the formula: 

$Φγ
β

α

= arc tg
B
B

 

Covariance matrix for direction cosines will be reckoned after 
Cov e e e S Cov x S($ , $ , $ ) ( $)α β γ = T  



 

with 
 S S S S= α β γ  
where S S Sα β γ, ,  - vectors of partial derivatives of function (12) in relation to parameters 

of the surface equation. 
 
Calculation of deviations of the actual shell form from the model one. 
 Solving the set of approximation equations we shall also define a fitting vector v 
expressing not fulfilment by points representing the shell of approximating surface 
equation. 
Using the components N N Nx y z, ,  of the vector N normal the model surface, we can 

write  
x y z x y z p N N Nm m m x y z= +               (33) 

or 
x y z x y z v v vm m m x y z= +                (34) 

where 
 x y z   - coordinate matrix for points representing the actual shell, 
 x y zm m m  - coordinate matrix for points of the model shell, 
 v v vx y z  - matrix of form deviations' components between 

        approximated surface and the actual one, 
 N N Nx y z  - matrix of components of the vector normal to   

       approximated surface in observed points P x y z( , , ) , 
 p   - vector of searched parameters. 
Substituting in approximation equations the coordinates of observed points with model 
surface coordinates given by (33) and the vector of unknowns x by its estimator $x , we 
will get n independent condition equations, which can be written after modifications as 
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Solving n square equations of type (35) we shall define the vector of parameters p. 
The components v v vx y z, ,  of distance from observed point P to model shell will be 

computed from 
v pNx x=  ; v pNy y=  ; v pNz z=              (36) 

whereas the space distance is given by the formula 
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Covariance matrix for deviations of surface's form will be estimated according to 
 Cov v S Cov x y z S( ) ( , , )= T                  (38) 
where 
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Realizing the formula (38) we will get accuracy estimation of calculated form deviations 
of actual surface from the model one. 
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