Wprowadzenie

Współcześnie energia i surowce odgrywają ważną rolę w formułowaniu koncepcji i strategii geopolitycznych wielu państw. Surowce energetyczne przekształcają relację polityczną, determinują możliwości rozwoju gospodarczego oraz zdolności projekcji celów politycznych, a ich niedobór stanowi źródło sporów i konfliktów – regionalnych i międzynarodowych. Zamierzeniem badawczym publikacji pt. ‘Źródła energii i ich znaczenie dla bezpieczeństwa energetycznego w XXI wieku’ jest analiza stanu i perspektyw wykorzystania źródeł energii oraz rosnącego jej zapotrzebowania na bezpieczeństwo energetyczne państw, ewolucji sytuacji na światowych rynkach surowców energetycznych oraz powiązań politycznych i globalnych zależności surowcowych, a także implikacji geoekonomicznych ewentualnego niedoboru źródeł energii jako źródła kryzysu energetycznego,-economicznego i politycznego. Zarysowany problem jest istotny dla bezpieczeństwa całego współczesnego świata, a sytuacja Polski, która dąży do zapewnienia sobie bezpieczeństwa energetycznego, jest tylko częścią większej globalnej gry. Toczy się ona między największymi konsumentami energii a państwami, które posiadają dostęp do zasobów energetycznych. Wśród tych drugich możemy wyróżnić tzw. „stare” mocarstwa energetyczne, których siła opiera się na posiadaniu konwencjonalnych zasobów ropy naftowej i gazu ziemnego, oraz „nowe” wzrastające potęgi, które budują swoją pozycję na zasobach niekonwencjonalnych oraz próbują wykorzystywać źródła odnawialne.

Z punktu widzenia Polski, która jest mało liczącym się graczem na światowej mapie energetycznej, najważniejszym elementem jest zapewnienie sobie bezpieczeństwa energetycznego. Jako konsument Polska zużywa 95,7 mtoe (dane za 2014 r.)\(^1\), co stanowi 0,7% światowej konsumpcji energii. Wśród państw Unii Europejskiej daje to 6. pozycję, natomiast w Europie (poza państwami UE) więcej energii konsumują jeszcze Rosja, Ukraina i Turcja. W Polsce zdecydowana większość energii pochodzi ze spalania węgla (ok. 55%), który jest wydobywany ze złóż krajowych. Ropa naftowa i gaz ziemny (ok. 40%) tylko w niewielkiej części są produkcją krajową, stąd zapotrzebowanie w tym zakresie zaspokajane jest importem, głównie z kierunku rosyjskiego.

\(^1\) BP Statistical Review of World Energy, June 2015.
Pozostała część konsumowanej energii (ok. 5%) pochodzi ze źródeł odnawialnych. Łączna konsumpcja energii na świecie w 2014 r. wyniosła 12,9 tys. mtoe, z czego Unia Europejska odpowiadała za ok. 1,6 tys. mtoe (ok. 12,5% konsumpcji światowej). Z tego krótkiego zestawienia widać, że Polska nie może w znaczącym stopniu wpływać na popyt surowców energetycznych na świecie, stąd też raczej musimy dostosowywać się do światowych trendów i jesteśmy bardziej przedmiotem gry, która toczy się na arenie międzynarodowej, niż jej aktywnym podmiotem. Jednak poznanie regul i zasad rządzących rynkami poszczególnych surowców energetycznych ma istotne znaczenie dla podejmowania decyzji politycznych. Jak dotąd, w naszym kraju nie było istotnych opracowań naukowych poruszających te kwestie. Stąd też niezbędne wydaje się podjęcie tego ważnego tematu i jego kompleksowa analiza.

Zmiany, które dokonują się na światowych rynkach energii, są bardzo dynamiczne, pojawia się coraz więcej czynników, które muszą być uwzględniane przy podejmowaniu decyzji. Światowe zapotrzebowanie na surowce energetyczne wzrasta, co zmusza państwa do poszukiwania nowych, niekonwencjonalnych źródeł energii, a także rozwoju energetyki jądrowej i źródeł odnawialnych. Zmiany klimatu również wpływają na rozwój alternatywnych źródeł energii jako narzędzi do osiągania celów polityki klimatycznej. Na arenie międzynarodowej pojawiają się nowi aktorzy, którzy chcą zmienić panujący ład w tej dziedzinie, każdy z nich ma inne cele i interesy. Stąd konieczność szczegółowej analizy uwarunkowań bezpieczeństwa energetycznego największych producentów i konsumentów energii oraz założen ich polityki energetycznej.

Wykres 1. Polska na tle największych konsumentów energii na świecie i w Europie (dane za 2014 r. w mtoe)

![Wykres z danymi na temat konsumpcji energii]

Model międzynarodowych powiązań energetycznych obejmuje trzy podsektory: podaż źródeł energii, proces transformacji energii pierwotnej (produkcji energii) oraz zapotrzebowanie na energię kreowane przez odbiorców końcowych\(^2\). Wpływ na funkcjonowanie międzynarodowych rynków energii mają dodatkowo: ceny praw emisji CO\(_2\), czynniki polityczne na poziomie krajowym i międzynarodowym, dostępne technologie oraz czynniki społeczno-ekonomiczne. W efekcie podaży dostępnych na rynku surowców energetycznych i popytu na źródła energii pierwotnej tworzy się rynek międzynarodowy (a właściwie odrębne rynki dla różnych surowców), czego przejawem jest rozwinięty na szeroką skalę międzynarodowy handel surowcami ze specyficznie ukształtowanymi regułami handlowymi dla poszczególnych surowców i rynków. W rezultacie wzajemnych oddziaływań i powiązań między dostawcami (eksporterami) a odbiorcami (importerami) kształtują się ceny poszczególnych paliw. Z dostępnych źródeł energii pierwotnej, już w zdecydowanej większości na rynkach krajowych, produkowana jest energia niezbędna do funkcjonowania społeczeństw i gospodarek krajowych. Głównymi odbiorcami energii i jej finalnymi konsumentami są: przemysł, transport, rolnictwo, usługi i odbiorcy indywalni – gospodarstwa domowe. Zużycie energii elektrycznej i jej ceny wpływają w zasadniczy sposób na kształtowanie się zależności w sektorze transformacji (produkcji energii). W wyniku opisanych relacji (przedstawione na rys. 1) kształtują się charakterystyczne kierunki przepływów surowców energetycznych, co w zasadniczym stopniu determinuje inwestycje infrastrukturalne na poziomie międzynarodowym i krajowym. Oczywiście nie należy zapominać o emisji CO\(_2\), która jest efektem spalania surowców energetycznych.

Przedmiotem zainteresowania autorów i głównym tematem opracowania jest aspekt międzynarodowy zaprezentowanego modelu, czyli analiza międzynarodowych rynków ropy naftowej, gazu ziemnego, węgla, problematyka wykorzystania energii nuklearnej oraz energii pochodzącej ze źródeł odnawialnych (hydroenergetyka, energia wiatru, biomasy, energia geotermalna). Efektem będzie przedstawienie znaczenia poszczególnych źródeł energii dla bezpieczeństwa państw oraz implikacje polityczne, ekonomiczne, a także znaczenie dla środowiska naturalnego. Właśnie problem niedoboru surowców energetycznych i związane z nim bezpieczeństwo energetyczne to kluczowe tematy współczesnych debat dotyczących energii. Niedobor bardzo szeroko rozumianego, ponieważ nie chodzi tylko o skończenność konwencjonalnych źródeł energii, ale przede wszystkim nierównomiernie rozmieszczenie poszczególnych surowców na Ziemi. To ostatnie implikuje poważne konsekwencje polityczne i ekonomiczne, które określa się mianem bezpieczeństwa ekonomicznego. Zapotrzebowanie na energię charakteryzuje wszystkie współczesne gospodarki świata. Niewielkie różnice popytu na energię związane są tylko z pozio-

mem rozwoju gospodarczego i efektywnością wykorzystania dostępnych zasobów. Natomiast podaż surowców jest dość ograniczona, co wymusza specyficzne zachowania konsumentów, które powodują konieczność zapewnienia bezpieczeństwa energetycznego, ponieważ stało się ono gwarantem rozwoju gospodarczego.

Rysunek 1. Model światowych zależności energetycznych

Bezpieczeństwo energetyczne to stan braku zagrożenia przerwaniem dostaw energii oraz surowców do jej produkcji i może być analizowane w wymiarze podmiotowym, przedmiotowym, a także przestrzennym. Jest ono łańcuchem powiązanych ze sobą różnych wartości i czynników zarówno gospodarczych, jak i politycznych. Bezpieczeństwo energetyczne (określane także bezpieczeństwem dostaw energii lub zaopatrzenia w energię) jest determinowane przez co najmniej cztery czynniki, takie jak: dostępność, niezawodność, przystępna cena, nienaruszalność równowagi ekologicznej. Przy czym:

- Dostępność – oznacza, że energia dla konsumentów i użytkowników musi być dostępna w sposób ciągły. Wymaga to rozległego komercyjnego rynku sprzedawców i kupców handlujących towarami, wystarczającej ilości zasobów energetycznych, inwestycji, technologii oraz ram prawnych i regulacyjnych, które je wspierają.
Niezawodność – stopień, w jakim usługi energetyczne są chronione przed przerwami w dostawach. Opiera się na powiązanych kryteriach obejmujących: dywersyfikację źródeł dostaw (różne typy paliw i technologie), dywersyfikację łańcuchów dostaw (różni kierunki geograficzne i zróżnicowani dostawcy) oraz odporność osiągana jako zdolność do reagowania w sytuacji przerw w dostawach (zdolność do przejściowej redukcji zapotrzebowania na energię).

Przystępna cena – oznacza nie tylko relatywnie niskie ceny energii w porównaniu do dochodów konsumentów, ale też ich stabilność.

Nienaruszalność równowagi ekologicznej – oznacza eliminację lub minimalizację szkód środowiskowych, społecznych i ekonomicznych, które mogą być skutkiem długotrwałej eksploatacji infrastruktury energetycznej.

Te podstawowe składniki bezpieczeństwa energetycznego są osiągane w ramach trzech filarów polityki energetycznej opartej na: bezpieczeństwie dostaw (poprzez dywersyfikację zarówno ich kierunków, jak i źródeł paliw), konkurencyjnym rynku oraz powiązaniu wytwarzania energii z celami ochrony klimatu poprzez ograniczenie emisji i zanieczyszczeń środowiska. Polityka energetyczna ma na celu określenie działań niezbędnych do zabezpieczenia bieżących i przewidywanych w przyszłości potrzeb surowcowych, zapewniających trwały rozwój gospodarczy państwa, poprzez podejmowanie decyzji mających na celu stworzenie warunków do właściwego rozwoju i funkcjonowania sektora energetycznego.

W ujęciu podmiotowym bezpieczeństwo energetyczne obejmuje interesy wszystkich podmiotów związanych z surowcami: od producentów – eksporterów, przez państwa tranzytowe, po konsumentów – importerów. Podmiotem polityki bezpieczeństwa energetycznego będą zatem zarówno państwo, jak i pozostali uczestnicy systemu bezpieczeństwa energetycznego tacy jak korporacje energetyczne, konsumenci (indywidualni oraz przemysłowi). Rozumienie i definiowanie bezpieczeństwa energetycznego przebiega inaczej wśród krajów producentów, inaczej zaś wśród importerów i determinowane jest ich indywidualną sytuacją energetyczną, położeniem, zasobami naturalnymi, sytuacją geopolityczną i uwarunkowaniami międzynarodowymi. O ile dla krajów eksporterów bezpieczeństwo energetyczne oznacza przede wszystkim gwarancję popytu i dochodów w oparciu o wiarygodne rynki zbytu, o tyle dla państw importerów celem jest stabilność dostaw po akceptowalnej cenie i ich dywersyfikowana struktura. Dodatkowo możemy wyróżnić bezpieczeństwo energetyczne państw tranzytowych, które należy rozumieć jako bezpieczeństwo utrzymania statusu „mostów energetycznych”, co wiąże się z zachowaniem kontroli nad sieciami przesyłu i infrastrukturą energetyczną (np. rurociągi, porty, tankowce) oraz czerpaniem określonych zysków z opłat tranzytowych zasilających budżet państwa.
Należy zauważyć, iż w ujęciu przedmiotowym zapewnienie bezpieczeństwa energetycznego wymaga skoordynowanych działań na różnych płaszczyznach:

• politycznej (geostrategicznej) – w obszarze polityki wewnętrznej i międzynarodowej bezpieczeństwo energetyczne uzależnione jest od geograficznej struktury importowanych surowców, ryzyka narażania na wykorzystanie surowców energetycznych przez eksportera/dostawcę jako instrumentu polityki zagranicznej,
• ekonomicznej – minimalizacja kosztów energii, zdolność importera/konsumenta do nabycia potrzebnej ilości energii za przystępną cenę, zaś z perspektywy producenta możliwość zbytu surowców po korzystnej cenie,
• technicznej – odpowiedni stan techniczny infrastruktury energetycznej, systemów przesyłowych i magazynów, przy rezerwowaniu wymogów ochrony środowiska naturalnego,
• ekologiczno-społecznej – uwzględnia potrzeby rozwoju gospodarczego współczesnego świata, przy poszanowaniu środowiska i społecznej akceptacji wyboru źródeł energii.

W ujęciu przestrzennym bezpieczeństwo energetyczne możemy rozpatrywać na poziomie: krajowym (państwa), regionalnym i międzynarodowym (globalnym). Na poziomie krajowym możemy wyodrębnić wewnętrzny wymiar analizy (odporność systemu energetycznego na ewentualne zakłócenia dostaw) oraz wymiar zewnętrzny (równowaga pomiędzy krajową produkcją a konsumpcją zapewniona poprzez stabilne warunki importu surowców i energii).

Brak jednej powszechnej akceptowanej definicji bezpieczeństwa energetycznego wynika z odmiennego postrzegania potrzeb energetycznych przez różnych uczestników rynku energii. Niemniej jednak definiując pojęcie bezpieczeństwa energetycznego i biorąc pod uwagę powyższe uwarunkowania, możemy zapropozować ogólną definicję, iż jest to stan pewnej i nieprzerwanie dostępności zaopatrzenia w dostaw energii w każdym czasie, po przystępnych cenach i na oczekiwany poziom, pochodzącej z różnych źródeł, przy jednoczesnym poszanowaniu środowiska naturalnego, który nie zagraża podstawowym wartościam i celom państwowym.

Bezpieczeństwo energetyczne można zatem zdefiniować jako nieprzerwaną dostępność źródeł energii w rozsądnej cenie³. Tak rozumiane bezpieczeństwo będzie miało dwa wymiary: krótkoterminowe i długoterminowe. Długoterminowe bezpieczeństwo energetyczne będzie się odnosiło do terminowości inwestycji w infrastrukturę, dzięki którym będzie możliwe dostarczenie energii zgodnie z przyszłym rozwojem sytuacji gospodarczej czy potrzebami środowiskowymi. Krótkoterminowe bezpieczeństwo energetyczne koncentruje się na zdolności systemu energetycznego do szybkiego reagowania na nagle zmiany równowagi

podaży i popytu. Brak bezpieczeństwa energetycznego będzie się więc wiązał z nękatymi skutkami społecznymi i ekonomicznymi fizycznym braku surowców lub niekonkurencyjnymi bądź zbyt zmiennymi cenami. Biorąc pod uwagę konkretne przypadki, np. międzynarodowy rynek ropy, gdzie zarówno liczba nabywców, jak i dostawców jest ogromna, ceny są wynikiem gry popytu i podaży, a fizyczna niedostępność surowca ogranicza się do zdarzeń ekstremalnych. Kwestie bezpieczeństwa dostaw surowców są przede wszystkim związane z załamaniami gospodarczymi, będącymi wynikiem ekstremalnych skoków cen. Troska o fizyczną dostępność energii (surowców) jest powszechniejsza na rynku gazu ziemnego będąc na rynkach energii elektrycznej, gdzie systemy transmisyjne muszą być utrzymywane w stanie ciągłej gotowości. Mamy więc do czynienia w takich przypadkach z ograniczeniami na rynku mocy (rynek energii elektrycznej) bądź sytuację, w której ceny nie są w stanie zapewnić mechanizmu równowagi popytu i podaży (decydują inne czynniki, np. polityczne, jak na rynkach gazu ziemnego). Zapewnienie bezpieczeństwa energetycznego leży więc w żywotnym interesie każdego suwerennego państwa, ponieważ daje gwarancję jego rozwoju społecznogospodarczego, a więc determinuje jeden z podstawowych interesów narodowych. W krótkim terminie państwa muszą być przygotowane na szybką reakcję na wpadek nagłego braku surowców i w tym celu wykorzystują środki reagowania kryzysowego. Oczywiście, żeby takie działania były skuteczne, nie wystarczają procedury i decyzje polityczne, konieczne jest istnienie rozbudowanej infrastruktury, dzięki której można zapewnić alternatywne dostawy brakujących surowców. Natomiast długoterminowy aspekt bezpieczeństwa energetycznego będzie się raczej skupiał na promowaniu alternatywnych źródeł energii, co ma związek ze skończością zasobów surowców energetycznych. Jest to jednak dość odległa perspektywa, więc działania na rzecz poprawy bezpieczeństwa energetycznego w długim okresie sprowadzają się do promowania polityki energetycznej, która zachęca do dywersyfikacji zarówno rodzajów, jak i źródeł zaopatrzenia w energię oraz promowania bardziej zintegrowanych międzynarodowo rynków energii.

Bezpieczeństwo narodowe utożsamiane z bezpieczeństwem państwa jest kategorią wielowymiarową i składa się z różnych dziedzin, np. bezpieczeństwa politycznego, ekonomicznego, społecznego, militarnego, ekologicznego, informacyjnego itp. Elementem bezpieczeństwa ekonomicznego (m.in. obok żywnościowego i finansowego) jest bezpieczeństwo surowcowe, które oznacza zdolność systemu gospodarczego państwa do zapewnienia dostępności surowców, ze źródeł krajowych i zagranicznych, na poziomie (i o strukturze) odpowiadającym potrzebom gospodarki i społeczeństwa, a zarazem gwarantującym potencjał do przeciwagonia się naciskom zewnętrznym i niezagrożony rozwój gospodarki narodowej. Będące zaś jego elementem składowym bezpieczeństwo energetyczne (naftowe, gazowe, energii elektrycznej) to zdolność gospodarki narodowej do bieżącego
i perspektywicznego zaopatrzenia w energię odbiorców krajowych, po społecznie akceptowalnych cenach i przy zachowaniu niezależności politycznej. Zatem bezpieczeństwo energetyczne jest jednym z wymiarów szeroko rozumianego bezpieczeństwa ekonomicznego i należy do pozamilitarnych kategorii bezpieczeństwa narodowego, aczkolwiek istnieje ścisła współzależność pomiędzy zaopatrzeniem w energię a potencjałem obronnym państwa, ponieważ do funkcjonowania sił zbrojnych potrzeba odpowiedniej ilości energii.

Przez kolejne tysiąclecia ludzkość rozwijała się względnie powoli, zaspakajając aż do XVII w. potrzeby energetyczne głównie w oparciu o energię spalania drewna, siłę wiatru i nurt rzek (koło wodne). Wraz z początkiem rewolucji przemysłowej powszechne zastosowanie jako źródło energii znalazł węgiel kamienny. Od początku XX w. jego znaczenie zaczęło stopniowo maleć na rzecz wzrostu zastosowania ropy naftowej i gazu ziemnego, zaś rozwój energetyki jądrowej na szerszą skalę nastąpił dopiero w ostatnich dwóch dekadach XX w. Dokonując analizy ewolucji wykorzystania źródeł energii, możemy podzielić je na: a) odnawialne: energię słoneczną, energię kinetyczną wiatrów i energię kinetyczną wnętrza oceanów, energię fal morskich, energię przypływów morskich i energię skorupy ziemskiej; b) nieodnawialne: paliwa kopalne (geopaliwa), jak węgiel, ropa naftowa i gaz ziemny, oraz paliwa jądrowe, np. uran.

Rozwój cywilizacyjny i gospodarczy powoduje rosnące zapotrzebowanie na energię, która jest pojęciem wielowymiarowym. Możemy je rozważyć w różnych aspektach:

- **Naukowym** – w którym energia to wielkość fizyczna definiowana jako zdolność obiektu do wykonywania pracy, własność ciepła, ruchu, potencjału elektrycznego opisywane przez fizykę i termodynamikę.
- **Ekonomicznym** – w którym energia to towar lub zestaw towarów, którymi handluje się na światowych rynkach; siły rynkowe dokonują efektywnej alokacji wyborów (gdy rosną ceny jednego paliwa, konsumenci poszukują jego zamiennika) ukierunkowanych na minimalizację kosztów tych transakcji.
- **Ekologicznym** – w którym źródła energii klasyfikowane są jako odnawialne lub nieodnawialne, czyste lub zanieczyszczające środowisko, wyczerpywalne lub niewyczerpywane, a nadrzędnym celem jest zrównoważony rozwój.
- **Społecznym** – w którym dostęp do energii to podstawowa wartość społeczna wynikająca z konieczności zaspokajania potrzeb bytowych (prawo dostępu do energii na potrzeby ogrzewania domu, oświetlenia, gotowania, klimatyzacji i transportu), w obrębie której zagwarantowany jest równy dostęp do usług energetycznych, co wiąże się z koniecznością jej sprawiedliwej dystrybucji dla konsumentów.
- **Geopolitycznym** – w którym surowce energetyczne i geograficzna lokalizacja zasobów (głównie paliw kopalnych) kształtują relacje międzypaństwowe oraz bezpieczeństwo energetyczne państwa.
Z punktu widzenia stopnia przetworzenia energii rozróżniamy: a) pierwotne nośniki energii (pozyskiwane bezpośrednio z zasobów naturalnych w postaci kopalin, np. węgiel, ropa naftowa, gaz ziemny) oraz takie formy energii, jak energia rzek, energia słoneczna, energia wiatru oraz energia biomasy i energia geotermalna; b) wtórne (przetworzone przez człowieka) nośniki energii pierwotnej, np. energia elektryczna, ciepło, benzyna, olej napędowy, produkty zgazowania węgla (metan, wodór).

Ze względu na wyczerpywalność nośników energii dzielimy na: a) odnawialne (których zasoby nie wyczerpują się), jak na przykład energia słoneczna, energia wiatru, rzek, energia geotermalna; b) nieodnawialne (których zasoby są ograniczone i wyczerpują się), jak na przykład węgiel, ropa naftowa, gaz ziemny, czy uran.

Nośniki energii możemy też podzielić ze względu na sposób wydobycia a) metodami tradycyjnymi (klasyczny proces wiertniczy) oraz b) metodami niekonwencjonalnymi (innnowacyjny sposób technologii wiercen, tzw. szczelinowanie hydrauliczne, ang. hydraulic fracturing).

Międzynarodowe rynki energii różnią się od siebie w zależności od specyfiki konkretnego surowca i źródeł wytwarzanej energii pierwotnej. Nieodnawialne źródła energii: ropa naftowa, gaz ziemny i węgiel zostaną poddane analizie pod względem dostępnych rezerw konkretnego surowca, wielkości wydobycia i konsumpcji oraz międzynarodowych szlaków handlu wspomnianymi surowcami. Natomiast energia nuklearna oraz odnawialne źródła energii (hydroenergetyka, energia wiatru, geotermalna, biomasy) mają coraz większe znaczenie w zapobieganiu popytu na energię pierwotną. W zestawieniach niniejszej analizy, dla ułatwienia roli i znaczenia poszczególnych źródeł energii, oprócz jednostek charakterystycznych dla poszczególnych surowców, zostaną użyte przeliczone jednostki, jako tony ekwiwalentu ropy naftowej (np. energia elektryczna pochodząca ze źródeł odnawialnych)⁴. Podstawowe wartości energii pierwotnej z energetyki nuklearnej i hydroenergetyki oraz energii elektrycznej ze źródeł odnawialnych zostały uzyskane w wyniku obliczenia równoważnej ilości paliw kopalnych niezbędnej do wytworzenia tej samej ilości energii elektrycznej w elektrowni cieplnej zakładając, że wydajność konwersji wynosi 38%⁵.

⁴ Milion ton ekwiwalentu ropy naftowej (mtoe) to jednostka używana do porównania wartości energii uzyskanej ze spalania różnych paliw; jednostkę Mtoe przyjęto więc dla celów porównawczych (ang. million tonnes oil equivalent), wg przelicznika 1 toe=41,87 GJ (gigadżuli energii) lub 1 toe=11,63 MWh (megas wat godzin).

Zapotrzebowanie na energię pierwotną na przestrzeni ostatnich 50 lat nieustannie rosło, w 1965 r. wynosiło 3765 mtoe, a w 2014 r. już 12928 mtoe, co oznacza ponad trzykrotny wzrost konsumpcji energii. Niewielkie okresy korekty trendu wzrostowego miały miejsce tylko trzykrotnie: w okresach kryzysów naftyowych w latach 70. XX w. oraz podczas ostatniego kryzysu w 2008 r. Jednak statystyki zużycia energii doskonale odzwierciedlają zmianę układu sił w światowej gospodarce, szczególnie w ostatniej dekadzie. Rok 2007 był ostatnim, w którym konsumpcja energii w państwach OECD była większa niż w pozostałych państwach świata, po tej dacie mamy do czynienia z konsumpcją energii na dość stabilnym poziomie w państwach OECD, natomiast w pozostałych państwach wyraźnie rośnie. Z jednej strony jest to efektem kryzysu gospodarczego z 2008 r., który najbardziej dotknął najbogatsze państwa świata i spowodował zauważalny spadek PKB tych państw. Z drugiej, daje się zauważyć wyraźny wzrost efektywności wykorzystania energii w państwach wysokorozwiniętych, w konsekwencji zahamowany został wzrost zapotrzebowania na energię, co nie powoduje uszczerbku dla rozwoju gospodarczego czy statusu życia mieszkańców. Natomiast państwa rozwijające się nie odczuły negatywnych konsekwencji ostatniego kryzysu, czego efektem jest wysoka dynamika wzrostu PKB, co przekłada się automatycznie na zwiększone zapotrzebowanie na energię, w związku z gorszym zaawansowaniem technologicznym i częstym wykorzystywaniem energochłonnych technologii produkcji. Temu ostatniemu trendowi sprzyjała też specyficzna polityka państw wysoko-rozwojowych, które modernizując swoje gospodarki, stawiały na sektor usług, a sferę produkcyjną (energochłonną przemysł) przeniosły do państw rozwijających się, gdzie były niskie koszty pracy i mniej rygorystyczne przepisy dotyczące środowiska naturalnego.
Wykres 3. Zapotrzebowanie na energię pierwotną 10 wybranych konsumentów energii na świecie i Polski w latach 1999 oraz 2014 (dane w mtoe)

Wspomniane trendy są jeszcze lepiej widoczne, jeśli zestawi się państwa, w których zapotrzebowanie na energię było w ostatnich latach najwyższe. Państwa wysokorozwinięte na przestrzeni ostatnich 15 lat utrzymywały konsumpcję energii na stałym poziomie (USA, Niemcy, Francja) bądź nawet zużycie energii spadało (Japonia), natomiast w państwach rozwijających się zapotrzebowanie na energię rosło (Chiny, Indie, Brazylia). Warto dodać, że największą grupę konsumenci energii na świecie to praktycznie ta sama grupa, co największe gospodarki świata.

Udział poszczególnych źródeł energii w światowej konsumpcji na przestrzeni ostatnich pięćdziesięciu lat nie uległ zasadniczym zmianom. Przyglądając się jednak bliżej szczegółowym danym, zwłaszcza z ostatnich kilkunastu lat, możemy mówić o kształtowaniu się nowego trendu i powolnej ewolucji w kierunku zmniejszania się roli źródeł konwencjonalnych (w szczególności ropy naftowej) oraz wzrostu znaczenia energii ze źródeł odnawialnych. W połowie lat 60. XX w. wśród źródeł pozyskiwania energii dominowały ropa naftowa i węgiel, ich udział w konsumpcji energii wyniósł 80%. Pewną rolę odgrywały gaz ziemny i hydroenergetyka (odpowiednio ok. 16% i 5% udziału), natomiast cywilne wykorzystanie technologii nuklearnych czy energia pochodząca z źródeł odnawialnych dopiero pojawiały się w bilansie energetycznym świata, a w zasadzie kilku państw. Inaczej sytuacja wygląda obecnie, w 2014 r. ropa jest nadal najważniejszym źródłem energii, lecz jej znaczenie systematycznie maleje.
Chociaż jej konsumpcja nieustannie rośnie (z 1529 mln ton w 1965 r. do 4211 mln ton w 2014 r.), to stanowi już niewiele ponad 30% w źródłach konsumowalnej energii. Główną przyczyną tego trendu jest zwiększanie konsumpcji energii pochodzącej z innych źródeł, ponadto ropa to jedynie źródło energii, którego udział w bilansie całego świata systematycznie maleje. Nic nie wskazuje, żeby ten trend miał się odwrócić. Wydaje się, że nie pomogą tutaj eksploatowane na ogromną skalę złoża ropy niekonwencjonalnej (szczególnie w Stanach Zjednoczonych). O wiele większe znaczenie będą miały zapewne decyzje największych konsumentów energii na świecie (Unii Europejskiej, a ostatnio Stanów Zjednoczonych i Chin) stawiające na zwiększanie efektywności energetycznej oraz na źródła niskoemisyjne. Węgiel jako źródło energii jest specyfическим przykładem paliwa, którego udział w bilansie energetycznym systematycznie maleł do końca XX w., jednak trend odwrócił się na początku XXI w. Obecnie ze spalania węgla pozyskuje się blisko 30% konsumowanej energii. Za ten stan rzeczy odpowiedzialne jest głównie wzrastające zapotrzebowanie na energię w Chinach. Konsumpcja energii pochodzącej z węgla wzrosła w tym państwie z 114 mtoe w 1965 r. do 1962 mtoe w 2014 r. (co stanowi 66% pozyskiwanej energii). Ponadto Chiny są największym konsumentem węgla na świecie (50% udział) i daleko w tyle pozostają drugie pod tym względem Stany Zjednoczone z konsumpcją na poziomie 455 mtoe w 2014 r. (prawie 12% udział). Z państw, które znacząco zwiększyły konsumpcję energii z węgla wymienić można jeszcze Indie, Japonię, Koreę Pd. i Indonezję.

Wykres 4. Największe gospodarki świata w 2014 r., dane w mld USD (wg PPP)

![Diagram showing the largest economies in the world in 2014, measured in USD at PPP.](image)

Źródło: *World Economic Outlook, 14 April 2015.*
Gaz ziemny to trzecie pod względem znaczenia źródło energii na świecie, jego udział w światowej konsumpcji energii na przestrzeni ostatnich 30 lat utrzymuje się na względnie stałym poziomie ok. dwudziestu kilku procent. W 2014 r. z gazu ziemnego pochodziło 3065 mtoe konsumowanej energii, co dało ok. 24% udział w całości konsumowanej energii. Gaz ziemny, ze względu na swoje właściwości fizyczne i trudności w transporcie, ma istotne znaczenie tylko w kilku regionach świata, tj. w Stanach Zjednoczonych i państwach europejskich. Rozwój technologii szczelinowania hydraulicznego, które umożliwiły eksploatację złóż niekonwencjonalnych, oraz rozbudowa infrastruktury pozwalającej na skraplanie gazu (LNG), która umożliwiła transport surowca na dalekie odległości, tylko w niewielkim stopniu zmieniają światowe trendy konsumpcji. Obok wspomnianych Stanów Zjednoczonych, zwiększanie się roli gazu ziemnego można zauważyć w bilansach energetycznych m.in.: Chin, Iranu, Japonii, Korei Południowej czy Tajlandii. To właśnie państwa azjatyckie w dużej mierze najbardziej skorzystały na rozwoju technologii LNG, tylko Japonia i Korea Południowa odpowiadają za ponad połowę importu gazu LNG na świecie (w 2014 r. Japonia kupiła 120 mld m³ LNG, a Korea Pd. ponad 51 mld m³ LNG).

Wspomniane trzy źródła energii, czyli ropa naftowa, gaz ziemny i węgiel, odpowiadają za ponad 86% konsumowanej energii na świecie, pozostałe źródła to niewiele ponad 13%, chociaż jeszcze w 1965 r. pochodziły z nich tylko 5% konsumowanej energii. Jednak w głównej mierze była to energia pochodząca
z wykorzystywania spadku wody (hydroenergetyka). O wzrastającej roli i znaczeniu pochodzenia energii odnawialnych świadczy jej udział w 1965 r. (ok. 1,1 mtoe, co stanowiło ok. 0,03%) i w 2014 r. (ok. 316 mtoe, co stanowi już ponad 2%) udział. Warto również zasygnalizować w tym miejscu malejące znaczenie energetyki nuklearnej oraz względnie stabilne udziały hydroenergetyki. Regres energetyki nuklearnej wynika głównie z decyzji politycznych motywowanych względami środowiskowymi (składanie odpadów nuklearnych) oraz zagadnieniami bezpieczeństwa reaktorów (wypadki w elektrowniach, np. Fukushima w 2011 r.). Ponadto wykorzystywanie energii atomowej wymaga posiadania odpowiednich technologii, stąd tylko kilkanaście państw na świecie wykorzystuje atom jako istotne źródło energii (Stany Zjednoczone, Francja, Federacja Rosyjska, Niemcy, Korea Pd., Chiny). Ciekawym przykładem jest Japonia, która niemal całkowicie wygasła swoje reaktory atomowe po wypadku w Fukushima w 2011 r. (choć jeszcze w 2010 r. energetyka atomowa odpowiadała za blisko 15% bilansu energetycznego). Natomiast, aby można było cieki wodne wykorzystywać do produkcji energii, konieczne są odpowiednie warunki naturalne, co jest głównym determinantem bycia znaczącym światowym producentem i konsumenatem energii pochodzącej z tego źródła. Należy tutaj wspomnieć o Chinach, które w ten sposób produkują ok. 240 mtoe (tj. ponad 27% światowej produkcji). Warunki naturalne wykorzystują jeszcze Brazylia, Kanada i Stany Zjednoczone (po ok. 10% udziałów w światowej produkcji i konsumpcji). Jak już wspomniano, ten sposób pozyskiwania energii nie ma jednak perspektyw z racji naturalnych ograniczeń i zapewne udziały hydroenergetyki w światowej konsumpcji energii będą spadać.

Zrozumienie istoty znaczenia surowców dla polityki państwa wymaga analizy koncepcji zasobów surowców naturalnych, a ta wiąże się z problemem skończości źródeł nieodnawialnych. Obecny stan wiedzy pozwala oszacować zasoby surowców nieodnawialnych (ang. resources) jako duże, aczkołowieck należy zaznaczyć, że są one nierównomierne rozłożone na świecie. Fakt specyficzności ich rozlokovania (na rozmieszczenie należy nałożyć mapę polityczną świata) w połączeniu ze skończonością zasobów rodzi najistotniejsze implikacje geoekonomiczne. Nawet w państwach (regionach) o znaczących zasobach ich wydobycie zazwyczaj będzie spadać, wraz z wyczerpywaniem się zasobów surowców nieodnawialnych (ang. depletion) złoże. Choć nie ma na to naukowych dowodów, z obserwacji empirycznych wynika, że wydobycie zaczyna szybko spadać, gdy złoże jest opróżnione w 50%. Ten fakt jest bardzo często wykorzystywany np. na poparcie teorii szczytu wydobycia ropy naftowej (ang. the oil peak theory). Głównym powodem spadku wydobycia jest fakt, że w pierwszej kolejności eksploatuje się surowiec ze złoże, które są największe, a więc najprostsze i najtańsze w eksploatacji. Dopiero w dalszej kolejności sięga się do zasobów mniejszych, trudniejszych i bardziej kosztownych w eksploatacji. Oznacza to, że w miarę
wyczerpywania się danego złoża, rosną również koszty pozyskania surowca, więc jeśli cena surowca na rynku nie zwiększy się odpowiednio, następuje spadek wydobycia. Oczywiście należy mieć na uwadze więcej uwarunkowań, z których najistotniejsze znaczenie wydaje się mieć prowadzona przez konkretne państwa polityka wobec przedsiębiorstw zajmujących się eksploatacją surowców naturalnych (chodzi głównie o przepisy prawne, zasady podatkowe i ograniczenia administracyjne dotyczące wydobycia surowców).

Dostępne zasoby surowców (ang. remaining recoverable resources) składają się z: udokumentowanych rezerw (and. proven reserves), prognozowanych wzrostów rezerw ze znanym złoża (ang. reserves growth) oraz jeszcze nieodkrytych zasobów (ang. undiscovered resources), czyli takich, które zostały ocenione jako możliwe do eksploatacji przy użyciu dostępnych technologii. W literaturze istnieje wiele różnych klasyfikacji koncepcji zasobów i rezerw6. Warto wprowadzić jeszcze jedną zmianą, którą są zasoby wydobywalne (ang. ultimately recoverable resources). Można je zdefiniować jako zasoby technicznie wydobywalne, czyli takie, które jesteśmy w stanie wydobyć przy użyciu dostępnych technologii. Chociaż należy dodać, że należy brać pod uwagę ekonomiczność takich przedsięwzięć, czyli precyzując, chodzi o takie zasoby, które są możliwe do wydobycia przy użyciu obecnie dostępnych technologii, przy aktualnych cenach konkretnego surowca. Oszacowanie ilości zasobów, które są technicznie dostępne, nie oznacza więc automatycznie, że będą to zasoby dostępne z ekonomicznego punktu widzenia. Przedstawiony problem ma poważne konsekwencje zarówno polityczne, jak i ekonomiczne. Jest to widoczne zwłaszcza przy okazji eksploatacji tzw. niekonwencjonalnych zasobów gazu i ropy (ang. unconventional oil and gas). Wysoka cena surowca spowodowała opłacalność eksploatacji trudno dostępnych złoże niekonwencjonalnych. Dodatkowa ilość ropy i gazu na światowych rynkach doprowadziła do spadku cen surowca, co w konsekwencji postawiło pod znakiem zapytania opłacalność kosztownych inwestycji w eksploatację złoże niekonwencjonalnych.7 Aby ustalić stopień wyczerpania się złoża, należy wiedzieć, ile surowca zostało wydobytego oraz oszacować, jaką ilość surowca jest możliwa do wydobycia. Ta druga wartość jest zmienią krytyczną dla zasobów wydobywalnych, ponieważ stanowi podstawę do wszelkiego rodzaju analiz i modelowania, a w konsekwencji stanowi podstawę procesu decyzyjnego w zakresie dalszej eksploatacji danego złoża (w zasadzie jej ekonomicznej opłacalności). Możliwa do wydobycia ilość surowca jest również wskazówką dla firm w kontekście ich dalszego rozwoju, procesów planowania i podejmowania decyzji. Opisany proces i wskazane trudności pokazują, jak trudne jest precyzyjne określenie dostępnych

6 From oil resources to reserves, [w:] World Energy Outlook 2013, OECD/IEA, Paris 2013, s. 421–456.
7 Szerzej o tym problemie w rozdziałach dot. ropy naftowej i gazu ziemnego.
zasobów konkretnego surowca, nie tylko w skali konkretnego złoża (ang. field), ale szczególnie w skali globalnej.

Przykładowo, udokumentowane rezerwy ropy naftowej na świecie, na koniec 2014 r., wynoszą ok. 1700 mld bbl, co ciekawe, od kilkudziesięciu lat wzrastają pomimo coraz większego wydobycia. Natomiast szacunki dotyczące zasobów ropy naftowej w miarę upływu czasu podlegają jeszcze większym wahaniom i charakteryzują się znacznym stopniem niepewności. Ostatnie dostępne dane wskazują, że łączne zasoby ropy ze złoże konwencjonalnych i niekonwencjonalnych wynoszą ok. 6000 mld bbl. Przyczyną tego stanu rzeczy są głównie złoża niekonwencjonalne, które są bardzo obfite w surowiec, ale mało rozpoznane zarówno pod względem rozmiarów konkretnego złoża, jak i oceny, jaka ilość surowca jest technicznie możliwa do wydobycia przy dostępnych obecnie technologiach.

Zmiany klimatyczne, jakie zachodzą we współczesnym świecie, są poważnym wyzwaniem dla sektora wytwarzania energii. Koncentracja gazów cieplarnianych emitowanych głównie z powodu działalności człowieka zmusza do przewartościowania dotychczasowego modelu światowego systemu energetycznego, opartego na intensywnym wykorzystaniu paliw kopalnych, i upowszechnienia gospodarki niskoemisyjnej (ang. low-emission economy). Toteż przyszłość światowej energetyki stanowią paliwa niemisyjne jako „czyste źródła energii”. Rozwój międzynarodowego reżimu przeciwdziałania zmianom klimatu może być silnym bodźcem do promocji urządzeń przemysłowych o niskiej emisji dwutlenku węgla, a wyniki

porozumień dotyczących zasad międzynarodowego reżimu zmian klimatu, określone w trakcie negocjacji Protokołu z Kioto, będą warunkować kierunki rozwoju polityki energetycznej poszczególnych państw w najbliższych dekadach. Przejście do gospodarki niskoemisyjnej, rozumianej przede wszystkim jako gospodarka niskowęglowa (ang. low-carbon economy), może jednak doprowadzić do znaczącego obniżenia konkurencyjności przemysłu niektórych państw (gdzie „czarne złoto” stanowi ważną składową krajowego miksu energetycznego) i eliminacji węgla jako źródła energii.

Kraków, sierpień 2015 r.