Show simple item record

dc.contributor.authorEkielski, Adam
dc.contributor.authorKoronczok, Jerzy
dc.contributor.authorLorencki, Jakub
dc.contributor.authorCzech, Tomasz
dc.contributor.authorTulska, Ewa
dc.date.accessioned2018-03-05T11:23:26Z
dc.date.available2018-03-05T11:23:26Z
dc.date.issued2017-11
dc.identifier.citationEkielski A., Koronczok J., Lorencki J., Czech T., Tulska E. 2017. Crops Diagnosis Using Hurst Exponent Values in Fields Image Analysis. [in:] Lorencowicz E. (ed.), Uziak J. (ed.), Huyghebaert B. (ed.). Farm Machinery and Processes Management in Sustainable Agriculture, 9th Int. Scient. Symp. ULS Lublin, p. 103-108en
dc.identifier.isbn978-83-937433-2-2
dc.identifier.otherDOI: 10.24326/fmpmsa.2017.19
dc.identifier.urihttps://depot.ceon.pl/handle/123456789/14830
dc.description.abstractOne of the branches of sustainable agriculture is the precision farming which assumes an individual approach to each plant. The main problem encountered by the precision agriculture is to quickly acquire and analyze good quality data assessing the condition of the crop. One of the fastest growing monitoring techniques is the analysis of images obtained from cameras placed on UAV. The studies used the chaos tools to determine Hurst exponent values received from images collected during UAV flights over the fields. The obtained results of image analysis indicated the presence of a strong dependency between the Hurst exponent values and state of crops. Images showed crops which are in good standing have been seen as strong organize objects represented by the mean Hurst exponent values from 0.8 to 0.87. Crops in which occurred the destruction of plants on the collected images were estimated by the Hurst exponent between 0.41 and 0.49 values, which indicates the presence of the characteristics of chaotic changes in the distribution of color attributes.en
dc.language.isoen
dc.publisherDept. of Mach. Exploit. and Management of Prod. Processes, ULS in Lublin, Polanden
dc.rightsUznanie autorstwa-Użycie niekomercyjne 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/pl/*
dc.subjectsmart farmingen
dc.subjectHurst exponenten
dc.subjectfractalsen
dc.subjectcrops identificationen
dc.subjectsustainable agricultureen
dc.titleCrops Diagnosis Using Hurst Exponent Values in Fields Image Analysisen
dc.typearticleen
dc.typeconferenceObjecten
dc.contributor.organizationWarsaw University of Life Sciences – SGGW, Faculty of Production Engineeringen
dc.contributor.organizationAgrocom_Polska, Jerzy Koronczoken
dc.contributor.organizationUniversity of Agriculture in Krakow, Faculty of Agriculture and Economicsen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne 3.0 Polska