Simulation and Analysis of the Transient Absorption Spectrum of 4-(N,N-Dimethylamino)benzonitrile (DMABN) in Acetonitrile

View/ Open
Date
2021-09-22Author
Kochman, Michał Andrzej
Durbeej, Bo
Kubas, Adam
Metadata
Show full item recordAbstract
4-(N,N-Dimethylamino)benzonitrile (DMABN) is a well-known model compound for dual fluorescence—in sufficiently polar solvents, it exhibits two distinct fluorescence emission bands. The interpretation of its transient absorption (TA) spectrum in the visible range is the subject of a long-standing controversy. In the present study, we resolve this issue by calculating the TA spectrum on the basis of nonadiabatic molecular dynamics simulations. An unambiguous assignment of spectral signals to specific excited-state structures is achieved by breaking down the calculated spectrum into contributions from twisted and nontwisted molecular geometries. In particular, the much-discussed excited-state absorption band near 1.7 eV (ca. 700 nm) is attributed to the near-planar locally excited (LE) minimum on the S1 state. On the technical side, our study demonstrates that the second-order approximate coupled cluster singles and doubles (CC2) method can be used successfully to calculate the TA spectra of moderately large organic molecules, provided that the system in question does not approach a crossing between the lowest excited state and the singlet ground state within the time frame of the simulation.
URI
https://pubs.acs.org/doi/10.1021/acs.jpca.1c06166?ref=PDFhttps://depot.ceon.pl/handle/123456789/20845
Collections

Using this material is possible in accordance with the relevant provisions of fair use or other exceptions provided by law. Other use requires the consent of the holder.